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ChIP-seq technology
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● Used to analyze, at the level of 
whole genomes:
○ transcription factor binding 

locations
○ histone modifications

ChIP-Seq principle
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ChIP-seq for 13 TFs in mouse ES 
cells



● Fragments (typically ~300bp) cover the 
region of interest + some pieces on both 
side.

● We only sequence a short read on one or 
both extremities

● The binding site is thus generally 
not in our reads !

● Solutions
○ Bioinfo read extension
○ Bioinfo: read shifting
○ Experiment: Exo-ChIP (digest 

flanks between sequencing).

ChIP-Seq analysis in brief

5



Identifying peaks from 
ChIP-seq reads
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Example of read mapping
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● BAM files do not contain fragment location but read location 
● We need to extend reads to compute fragments coordinates before 

coverage analysis
● Not required for PE

Coverage file and read extension 

wi wi+1 wi+2 wi+3 wi+4

156 20 14 5

Window

Coverage 8



Comparison between the input and the chip samples
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Why we use an input...
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Epigenetic modifications of histones
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Discovering motifs in the peaks



 Biological concepts of transcriptional regulation
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 Transcription factor specificity
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● The Sox2 and Oct4 transcription factors recognize specific DNA motifs.
● Cooperative binding: Sox2 and Oct4 closely interact to bind DNA. 
● The pair of transcription factors recognizes a composite motif called the « SOCT » motif 

(SOx+OCT).
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http://www.pdb.org/pdb/explore/explore.do?structureId=1O4X

Oct1 
POU 

domain

Oct1 
domain

Sox2

Sox2/Oct4 cooperative binding

http://www.pdb.org/pdb/explore/explore.do?structureId=1O4X
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Collection of binding sites 
used to build the Sox2 matrix 
(TRANSFAC M01272 )
R15133  GCCCTCATTGTTATGC
R15201  AAACTCTTTGTTTGGA
R15231  TTCACCATTGTTCTAG
R15267  GACTCTATTGTCTCTG
R16367  GATATCTTTGTTTCTT
R17099  TGCACCTTTGTTATGC
R19276  AATTCCATTGTTATGA
R19367  AAACTCTTTGTTTGGA
R19510  ATGGACATTGTAATGC
R22342  AGGCCTTTTGTCCTGG
R22344  TGTGCTTTTGTNNNNN
R22359  CTCAACTTTGTAATTT
R22961  GCAGCCATTGTGATGC
R23679  CACCCCTTTGTTATGC
R25928  TTTTCTATTGTTTTTA
R27428  AAAGGCATTGTGTTTC

A 6 7 4 4 2 0 8 0 0 0 0 2 7 0 1 4

C 2 2 6 5 9 12 0 0 0 0 0 2 2 2 0 6

G 4 3 2 4 1 0 0 0 0 16 0 2 0 2 9 3

T 4 4 4 3 4 4 8 16 16 0 16 9 6 11 5 2

Position-specific scoring matrix (PSSM)

Sequence logo

Sox2 : from binding sites to binding motif



● In addition to TF-specific matrices, TRANSFAC contains matrices representing the “consensus” of the 
binding specificity for several transcription factors belonging to the OCT family.

● This matrix was built from 55 sites, collected from different organisms (mouse, human, cat, 
xenopus, ...).
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Collection of binding sites 
used to build the motif of the OCT 
family (TRANSFAC M00795)
R00306TAATTAGCATA
R00551ATATTTGCATT
R00662TTATTTGCATA
R00664TCATTTGCATA
R00666ACATTTGCATA
R00814TCGTTAGCATG
R00815CGCATGGCATC
R00820GGAATTCCATT
R00824CGTATCTCATT
R00834TTATTTGCATA
R00842GGATTTGCATA
R00855GTATTTGCATA
R00872TAATTTGCATT
R00888CGATTTGCATA
R00893TGATTTGCATA
... 40 other sites

A 10 14 37 6 7 6 11 3 53 1 27

C 7 12 7 2 5 2 3 50 0 1 4

G 10 15 2 0 1 2 34 0 0 1 10

T 28 14 9 47 42 45 7 2 2 52 14

Position-specific scoring matrix (PSSM)

Sequence logo

“Family” binding motifs (FBM)
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gene 1

cis-regulatory 
elements

gene 2

gene 3

Case 1: promoters of co-expressed genes

TF binding site

Case 2: ChIP-seq peaks

discovered motif 
(represented as a
 sequence logo)

De novo motif discovery



● Find exceptional motifs based on the sequence only
● (No prior knowledge of the motif to look for)
● Criteria of exceptionality:

○ Over-/under-representation: higher/lower frequency than expected 
by chance 

○ Position bias: concentration at specific positions relative to some 
reference coordinates (e.g. TSS, peak center, …).
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De novo motif discovery



● MEME (Bailey et al., 1994)
● RSAT oligo-analysis (van Helden et al., 1998)
● AlignACE (Roth et al. 1998)
● RSAT position-analysis (van Helden et al., 2000)
● Weeder (Pavesi et al. 2001)
● MotifSampler (Thijs et al., 2001)
● … many others

Some motif discovery tools
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● Motif discovery from peak sequences, without a priori ("de novo" analysis).
○ Check if the expected motif (ChIP-ped factor) can be discovered from the peaks.

■ If not, evaluate if the experiment and bioinformatics treatment was OK 
(e.g. functional enrichment).

○ Improve annotated motifs
■ Obtain a well-documented motifs (built from thousands of sites), supposedly more reliable 

than "classical" motifs build from individual experiments (e.g. 10 sites from footprints and 
EMSA). 

■ Main annotation path for recent motif database releases (JASPAR, TRANSFAC, …).
○ Discover partner transcription factors.

● Differential motif discovery
○ Discover differentially represented motifs between a peak set of interest (test) compared to another 

one (control).
● Peak scanning

○ Goal: identify binding sites within the peaks.
○ Typical ChIP-seq peak: ~100 to 1000bp Actual binding site: 6 to 10 bp.

● Peak enrichment for known motifs
○ Scan sequences to identify putative binding sites for TFs known to interact.
○ Compare observed/expected number of sites.
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Motif analysis on ChIP-seq peaks



Regulatory sequence Analysis Tools (http://rsat.eu/)

170 Fungi 4648 Bacteria + 235 
Archaea

20 "Protists"

70 Metazoa

39 Plants

22

http://rsat.eu/
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Peak-motifs
● A workflow enabling to discover motifs in large 

sequence sets (tens of Mb) resulting from ChIP-seq 
experiments.

● Complementary pattern discovery criteria
○ Global over-representation
○ Positional biases
○ Local over-representation

● Links from motifs to putative binding factors
○ motif databases 
○ user-specified reference motifs

● Prediction of binding sites within the peaks.
○ Inspect distribution around peak centers
○ Can be loaded as UCSC track 

● Interfaces
○ Web interface
○ Stand-alone (Unix command-line)
○ Web services (SOAP/WSDL)
○ Virtual Machine for VirtualBox
○ Virtual machine at the IFB cloud
○ Soon: Debian package
○ Soon: Docker container
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1. Thomas-Chollier M, Herrmann C, Defrance M, Sand O, Thieffry D, van Helden J. 2012. 
RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets. Nucleic Acids Res 40(4): e31.

2. Thomas-Chollier,M., Darbo,E., Herrmann,C., Defrance,M., Thieffry,D. and van Helden,J. (2012). 
A complete workflow for the analysis of full-size ChIP-seq (and similar) data sets using peak-motifs. Nature Protocols, 7, 1551–1568.
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Peak-motifs: why providing yet another tool?
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Thomas-Chollier, Herrmann, Defrance, Sand, Thieffry, van Helden Nucleic Acids Research, 2012 

Peak-motifs: why providing yet another tool?

● Fast and scalable 
● Treat full-size datasets
● Complete pipeline

○ Peak properties 
(nucleotide, dinucleotide 
composition, lengths)

○ Motif discovery
○ Comparison with known 

motifs
○ Peak scanning

● Accessible to non-specialists
○ Demo buttons
○ Tutorials & Protocols
○ Human-readable HTML 

report with links to all 
result files.



Time complexity of motif discovery algorithms

Linear

> linear

> quadratic
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29
typical ChIP-seq dataset

1h

size limit of other websites

Peak-motifs: scalability

● Fast and scalable 
● Treat full-size datasets
● Using 4 complementary algorithms

○ Global over-representation
■ oligo-analysis
■ dyad-analysis (spaced motifs)

○ Positional bias
■ position-analysis
■ local-words

Thomas-Chollier, Herrmann, Defrance, Sand, Thieffry, van Helden Nucleic Acids Research, 2012 



Motif discovery: k-mer over-representation
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Motif discovery: k-mer position biases
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● ChIP-seq does not necessarily reveal direct binding: The motif of the targeted TF is 
not always found in peaks!

Direct binding Indirect binding

Direct versus indirect binding

32



Negative Controls
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Negative Controls in biology
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One example from a multitude: Wellik and Mario 
R Capecchi, Science, 2003. 



Negative and positive controls in bioinformatics
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● Negative control: quantify the capability of the program to return a 
negative answer when there are no regulatory elements.

○ Artificial sequences
■ RSAT random-sequences (Markov models to mimic 

k-mer frequencies of the organism )
○ Biological sequences without common regulation

■ RSAT random-genes (negative control for expression 
clusters)

■ RSAT random-genome-fragments 
(negative controls for ChIP-seq)

○ Randomized motifs: column permutations preserve nucleotide 
frequencies and information content

■ RSAT permute-matrix
● Positive control: quantify the capability of the program to detect 

known regulatory elements
○ Annotated sites (e.g. sites from TRANSFAC) in their original 

context (promoter sequences).
○ Annotated sites implanted in other context

■ Biological sequences (random selection).
■ Artificial sequences.

○ Artificial sites implanted in artificial sequences.
■ RSAT random-motif
■ RSAT random-sites
■ RSAT implant-sites
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RSAT random-genome-fragments

● Select a set of fragments with random 
positions in a given genome, and return 
their coordinates and/or sequences

● Adapted to chip-seq ?
○ Yes: same number of peaks + same 

size
○ No: composition of the sequences 

(nucleotides, k-mers) may change 
depends on genomic regions

○
● Complexify the control

○ Make sure no peak is covered
○ Take regions close / far from the 

peaks
○ Maintain same composition
○ Maintain same dataset size
○ …
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Why is it important ?

We show that the claimed universality of CPEs is 
explained by the low specificities of the patterns 
used and that the same match frequencies are 
obtained with two negative controls (randomized 
sequences and scrambled patterns). 
Our analyses also cast doubt on the biological 
significance of most of the 150,753 non-messenger- 
RNA-associated ChIP-exo peaks, 72% of which lie 
within repetitive regions. 

To prevent this ….



Supplementary information
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To go further

● The next slides explain step by step the algorithm behind oligo-analysis

● Peak-motifs : follow this protocol to grasp the detailed tweaking of parameters 
(send us an email to have free access to the PDF if necessary)

○ Thomas-Chollier et al. A complete workflow for the analysis of full-size ChIP-seq (and 
similar) data sets using peak-motifs. Nature Protocols 7, 1551–1568 (2012).

● Description and evaluation of peak-motifs
○ Matrix-quality : RSAT program that can be used to evaluate the enrichment of motifs in 

peaks

● Description of the RSAT software suite
○ Medina-Rivera A, Abreu-Goodger C, Thomas-Chollier M, Salgado H, Collado-Vides J, van 

Helden J.Theoretical and empirical quality assessment of transcription factor-binding 
motifs.Nucleic Acids Res. 2011 Feb;39(3):808-24. doi: 10.1093/nar/gkq710. Epub 2010 
Oct 4.

● Tutorial for ECCB 2014 : http://rsat.ulb.ac.be/eccb14/
39

http://rsat.ulb.ac.be/eccb14/


1. Medina-Rivera,A., Defrance,M., Sand,O., Herrmann,C., Castro-Mondragon,J.A., Delerce,J., Jaeger,S., 
Blanchet,C., Vincens,P., Caron,C., et al. (2015) RSAT 2015: Regulatory Sequence Analysis Tools. Nucleic Acids 
Res, 43, W50–6.

2. Thomas-Chollier,M., Darbo,E., Herrmann,C., Defrance,M., Thieffry,D. and van Helden,J. (2012) A complete 
workflow for the analysis of full-size ChIP-seq (and similar) data sets using peak-motifs. Nature Protocols, 7, 
1551–1568.

3. Thomas-Chollier,M., Herrmann,C., Defrance,M., Sand,O., Thieffry,D. and van Helden,J. (2012) RSAT 
peak-motifs: motif analysis in full-size ChIP-seq datasets. Nucleic Acids Res, 40, e31–e31.

4. Thomas-Chollier,M., Defrance,M., Medina-Rivera,A., Sand,O., Herrmann,C., Thieffry,D. and van Helden,J. 
(2011) RSAT 2011: regulatory sequence analysis tools. Nucleic Acids Res, 39, W86–91.

5. Thomas-Chollier,M., Sand,O., Turatsinze,J.-V., Janky,R., Defrance,M., Vervisch,E., Brohée,S. and van 
Helden,J. (2008) RSAT: regulatory sequence analysis tools. Nucleic Acids Res, 36, W119–27.

6. Sand,O., Thomas-Chollier,M., Vervisch,E. and van Helden,J. (2008) Analyzing multiple data sets by 
interconnecting RSAT programs via SOAP Web services: an example with ChIP-chip data. Nature Protocols, 3, 
1604–1615.

7. Turatsinze,J.-V., Thomas-Chollier,M., Defrance,M. and van Helden,J. (2008) Using RSAT to scan genome 
sequences for transcription factor binding sites and cis-regulatory modules. Nature Protocols, 3, 1578–1588.

8. Defrance,M., Janky,R., Sand,O. and van Helden,J. (2008) Using RSAT oligo-analysis and dyad-analysis tools to 
discover regulatory signals in nucleic sequences. Nature Protocols, 3, 1589–1603.

More info: RSAT descriptions + protocols
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▪ Binding sites are represented as “words” = “oligonucleotides”=“k-mer”
- e.g. acgtga is a 6-mer

▪ Signal is likely to be more frequent in the upstream regions of the co-regulated genes 
than in a random selection of genes

▪ We will thus detect over-represented words (k-mers, oligonucleotides).

Principle: detect unexpected patterns
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5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

…HIS7 

…ARO4

…ILV6

…THR4

…ARO1

…HOM2

…PRO3

Target gene

TF



Motif discovery using word counting
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■ Algorithm

∙ count occurrences of all k-mers in a set of related sequences (promoters 
of co-expressed genes, in ChIP bound regions,...)

Idea:
motifs corresponding to binding sites are generally repeated in the dataset

 → capture this statistical signal



Let’s take an example (yeast Saccharomyces cerevisiae)
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▪ NIT 
- 7 genes expressed under low nitrogen conditions

▪ MET
- 10 genes expressed in absence of methionine

▪ PHO
- 5 genes expressed under phosphate stress

PHO
aaaaaa|tttttt   51
aaaaag|cttttt   15
aagaaa|tttctt   14
gaaaaa|tttttc   13
tgccaa|ttggca   12
aaaaat|attttt   12
aaatta|taattt   12
agaaaa|ttttct   11
caagaa|ttcttg   11
aaacgt|acgttt   11
aaagaa|ttcttt   11
acgtgc|gcacgt   10
aataat|attatt   10
aagaag|cttctt   10
atataa|ttatat   10

MET
aaaaaa|tttttt   105
atatat|atatat   41
gaaaaa|tttttc   40
tatata|tatata   40
aaaaat|attttt   35
aagaaa|tttctt   29
agaaaa|ttttct   28
aaaata|tatttt   26
aaaaag|cttttt   25
agaaat|atttct   24
aaataa|ttattt   22
taaaaa|ttttta   21
tgaaaa|ttttca   21
ataata|tattat   20
atataa|ttatat   20

NIT
aaaaaa|tttttt   80
cttatc|gataag   26
tatata|tatata   22
ataaga|tcttat   20
aagaaa|tttctt   20
gaaaaa|tttttc   19
atatat|atatat   19
agataa|ttatct   17
agaaaa|ttttct   17
aaagaa|ttcttt   16
aaaaca|tgtttt   16
aaaaag|cttttt   15
agaaga|tcttct   14
tgataa|ttatca   14
atataa|ttatat   14



The most frequent oligonucleotides are not informative
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▪ A (too) simple approach would consist in detecting the most frequent 
oligonucleotides (for example hexanucleotides) for each group of upstream 
sequences.

▪ This would however lead to deceiving results.
- In all the sequence sets, the same kind of patterns are selected: AT-rich 

hexanucleotides.

PHO
aaaaaa|tttttt   51
aaaaag|cttttt   15
aagaaa|tttctt   14
gaaaaa|tttttc   13
tgccaa|ttggca   12
aaaaat|attttt   12
aaatta|taattt   12
agaaaa|ttttct   11
caagaa|ttcttg   11
aaacgt|acgttt   11
aaagaa|ttcttt   11
acgtgc|gcacgt   10
aataat|attatt   10
aagaag|cttctt   10
atataa|ttatat   10

MET
aaaaaa|tttttt   105
atatat|atatat   41
gaaaaa|tttttc   40
tatata|tatata   40
aaaaat|attttt   35
aagaaa|tttctt   29
agaaaa|ttttct   28
aaaata|tatttt   26
aaaaag|cttttt   25
agaaat|atttct   24
aaataa|ttattt   22
taaaaa|ttttta   21
tgaaaa|ttttca   21
ataata|tattat   20
atataa|ttatat   20

NIT
aaaaaa|tttttt   80
cttatc|gataag   26
tatata|tatata   22
ataaga|tcttat   20
aagaaa|tttctt   20
gaaaaa|tttttc   19
atatat|atatat   19
agataa|ttatct   17
agaaaa|ttttct   17
aaagaa|ttcttt   16
aaaaca|tgtttt   16
aaaaag|cttttt   15
agaaga|tcttct   14
tgataa|ttatca   14
atataa|ttatat   14



A more relevant criterion for over-representation
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▪ The most frequent patterns do not reveal the motifs specifically bound by specific 
transcription factors.

 
▪ They merely reflect the compositional biases of upstream sequences.

▪ A more relevant criterion for over-representation is to detect patterns which are 
more frequent in the upstream sequences of the selected genes (co-regulated) 
than the random expectation.

▪ The random expectation is calculated by counting the frequency of each pattern in 
the complete set of upstream sequences (all genes of the genome).

=> “Background”



Motif discovery using word counting

■ Algorithm
❑ count occurrences of all k-mers in a set of related sequences (promoters of co-expressed genes, in ChIP bound regions,...)

❑ estimate the expected number of occurrences from a background model
• empirical based on observed k-mer frequencies 

• theoretical background model (Markov Models)

46

Idea:
motifs corresponding to binding sites are generally repeated in the dataset

 → capture this statistical signal



Estimation of word expected frequencies from background sequences
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Example: 
6nt frequencies in the whole set of 6000 yeast upstream sequences



Hexanucleotide occurrences in yeast Nitrogen-responding genes

48

NIT
aaaaaa|tttttt   80
cttatc|gataag   26
tatata|tatata   22
ataaga|tcttat   20
aagaaa|tttctt   20
gaaaaa|tttttc   19
atatat|atatat   19
agataa|ttatct   17
agaaaa|ttttct   17
aaagaa|ttcttt   16
aaaaca|tgtttt   16
aaaaag|cttttt   15
agaaga|tcttct   14
tgataa|ttatca   14
atataa|ttatat   14



27 observed
16.9 

expectedACGTGA
18 observed

2.95 
expected

How to evaluate expected
number of occurrences ?

Motif discovery using word counting
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Motif discovery using word counting

50

■ Algorithm

∙ count occurrences of all k-mers in a set of related sequences (promoters 
of co-expressed genes, in ChIP bound regions,...)

∙ estimate the expected number of occurrences from a background model

- empirical based on observed k-mer frequencies 

- theoretical background model (Markov Models)

∙ statistical evaluation of the deviation observed (P-value/E-value)

Idea:
motifs corresponding to binding sites are generally repeated in the dataset

 → capture this statistical signal



27 observed
16.9 

expectedACGTGA
18 observed

2.95 
expected

How « big » is the surprise 
to observe 18 occurrences 

when we expect 2.95 ?

Statistical significance
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Statistical significance

52

■ at each position in the sequence, there is a probability p that 
the word starting at this position is  ACGTGA

■ we  consider n positions 

■ what is the probability that k of these n positions correspond 
to  ACGTGA ?

■ Application : p = 3.4e-4 (intergenic frequencies)
n = 9000 position
x = 18 observed occurrences

How « big » is the surprise to observe 18 occurrences when expecting 2.95 ?

Binomial distribution to measure the 
exceptionality of the occurrences



● Sequencer : Illumina HiSeq 4000

● No. of reads per run, per sample : 
○ 1st run on the GAIIx : 10-20 millions of reads per lane
○ (HiSeq 2500) 4 samples per lane :~41 millions per sample
○ (HiSeq 4000) 8 samples per lane :~43 millions per sample 

● Length of DNA fragment : ~200bp

● No. of cycle per run : 50

Sequencing

53



Single end or paired end?
● Single end (most of the time)

● Paired-end sequencing 

○ Improve identification of duplicated reads 
○ Better estimation of the fragment size distribution
○ Increase the mapping efficiency to repeat regions
○ The price!

54



Library prep

Size selection (200 or 400 bp)
PCR amplification

Single-end Sequencing  Paired-end Sequencing

Ligation of Adapters

ChIP
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● Step between ChIP and sequencing.
● The goal is to prepare DNA for the sequencing.
● Starting material: ChIP sample (1-10ng of sheared DNA).



Considerations on ChIP
● Antibody

○ Antibody quality varies, even between independently prepared batches of the same 
antibody (Egelhofer, T. A. et al. 2011).

● Number of cells 
○ Large numbers of cells are required for a ChIP experiment (limitation for small 

organisms).

● Shearing of DNA (Mnase I, sonication, Covaris): trying to narrow down the 
size distribution of DNA fragments

                Complexity in DNA fragments
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Controls
● Used mostly to filter out false positives (high level of noise)

○ Idea: potential false positive will be enriched in both treatment and control.

● A control will fail to filter out false positives if its enrichment profile is very 
different from the enrichment profile of false positive regions in the 
treatment sample.

● 3 types of controls are commonly used :

○ ‘Input’ DNA: a portion of DNA sample removed prior to IP

○ DNA from non specific IP: DNA obtained from IP with an antibody not 
known to be involved in DNA binding or chromatin modification, such as 
IgG.

○ Mock IP DNA: DNA obtained from IP without antibodies.

● ‘Input’ most generally prefered.
57



Replicates
● A minimum of two replicates should be carried out per experiment. 

● Get biological replicates rather than technical replicates

○ i.e. taken from an independent cell culture, embryo pool or tissue 
sample. 
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ENCODE
● The ENCyclopedia Of DNA Elements (ENCODE) consortium has 

carried out hundreds of ChIP-seq experiments and has used this 
experience to develop a set of working standards and guidelines.

See: https://www.encodeproject.org/

https://www.encodeproject.org/
59

https://www.encodeproject.org/
https://www.encodeproject.org/
https://www.encodeproject.org/


Sequencing depth
● Estimate the required depth 

depending on:
○ ChIP-ped protein
○ Expected profile type
○ Expected number of binding sites
○ Genome size

● Examples
○ For human genome

■ 20 million uniquely mapped 
read sequences for 
point-source peaks.

■ 40 million for broad-source 
peaks.

○ For fly genome: 8 million reads.
○ For worm genome: 10 million 

reads.
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QC: Strand cross-correlation

Successful Failed



How to deal with replicates?
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How to deal with replicates
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Sample 1.a Sample 1.b

Analyze samples separately and take 
union or intersection of resulting peaks

Sample 1.a Sample 1.b

Sample 1

Merge samples prior to the peak calling 
(e.g recommended by MACS)



IDR
● IDR = Irreproducible Discovery Rate.

● Measures (in)consistency between replicates.

● Uses reproducibility between score rankings of peaks in the respective 
replicates to determine an optimal cutoff for significance.

● Idea:

○ The most significant peaks are expected to have high consistency between 
replicates.

○ The peaks with low significance are expected to have low consistency.

https://sites.google.com/site/anshulkundaje/projects/idr 
64

https://sites.google.com/site/anshulkundaje/projects/idr


IDR

(!) IDR doesn’t work on broad source data! 65



● Input
○ bed file with peaks

● Output 
○ Fraction of peaks per genomic elements and annotated peaks

Galaxy: Annotate peaks
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http://homer.salk.edu/homer/

Motif discovery and NGS data analysis

HOMER
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1 Peak ID
2 Chromosome
3 Peak start position
4 Peak end position
5 Strand
6 Peak Score
7 FDR/Peak Focus Ratio/Region Size
8 Annotation (i.e. Exon, Intron, ...)
9 Detailed Annotation (Exon, Intron etc. + CpG Islands, repeats, etc.)
10 Distance to nearest RefSeq TSS
11 Nearest TSS: Native ID of annotation file
12 Nearest TSS: Entrez Gene ID
13 Nearest TSS: Unigene ID
14 Nearest TSS: RefSeq ID
15 Nearest TSS: Ensembl ID
16 Nearest TSS: Gene Symbol
17 Nearest TSS: Gene Aliases
18 Nearest TSS: Gene description
19 Additional columns depend on options selected when running the program.

HOMER: annotate peaks

68



Peak co-occurrence statistics
Co-bound peaks
Differentially bound peaks

HOMER: compare peaks
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Clustering

Raw Data (fastq)

Mapping (bam)

Filtering (bam)

AnnotationClustering

Motif discovery

Visualization (bigwig) Peak calling (bed)

Quality Control
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● How does the signal (read counts) 
distribute around or inside: 
○ Transcriptional start sites 

(TSS)
○ Transcriptional termination 

sites (TTS)
○ Gene bodies, exons, introns

● Tools:
○ Deeptools (heatmapper)
○ seqMINER

● Unsupervised clustering methods 
(e.g k-means)
○ Discover some underlying 

classes of genomic regions

Based on signal distribution, are there any classes of genomic regions?
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Clustering
• Group together genomic regions with similar enrichments

• In a single sample or multiple samples

• E.g:

72

TF

H3K4me3

RNA pol II

Cluster 1 Cluster 2



Clustering

● seqMINER

○ User friendly interactive 

interface with multiple graphical 

representations

○ Multiple dataset comparison 

○ Java, multi-platform

33
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