ChIP-seq technology and applications

D. Puthier, C. Rioualen, J. van Helden

A compilation of slides recycled from the workshop on NGS organized in Cuernavaca in 2017

ChIP-seq technology

ChIP-Seq principle

- Used to analyze, at the level of whole genomes:
 - transcription factor binding locations
 - histone modifications

ChIP-seq for 13 TFs in mouse ES cells

Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells

Xi Chen,^{1,2,6} Han Xu,^{3,6} Ping Yuan,¹ Fang Fang,^{1,2} Mikael Huss,⁴ Vinsensius B. Vega,³ Eleanor Wong,⁵ Yuriy L. Orlov,⁴ Weiwei Zhang,^{1,2} Jianming Jiang,^{1,2} Yuin-Han Loh,^{1,2} Hock Chuan Yeo,⁴ Zhen Xuan Yeo,⁴ Vipin Narang,³ Kunde Ramamoorthy Govindarajan,³ Bernard Leong,³ Atif Shahab,³ Yijun Ruan,⁵ Guillaume Bourque,³ Wing-Kin Sung,³ Neil D. Clarke,⁴ Chia-Lin Wei,^{5,*} and Huck-Hui Ng^{1,2,*}

ChIP-Seq analysis in brief

- Fragments (typically ~300bp) cover the region of interest + some pieces on both side.
- We only sequence a short read on one or both extremities
- The binding site is thus generally not in our reads !
- Solutions
 - Bioinfo read extension
 - Bioinfo: read shifting
 - Experiment: Exo-ChIP (digest flanks between sequencing).

Aligned reads

Binding profile

Binding Peak

Identifying peaks from ChIP-seq reads

Example of read mapping

<u>F</u> ile Genomes <u>V</u> iew	Trac <u>k</u> s Regions	Tools GenomeSpace Help		
Human hg19	- chr1	▼ RNF223	Go 音 🔺 🕨 🧔 🕱 🏳 I	
	p36.31 p36.13	p35.3 p34.2 p32.3 p31.3 p31.1 p22.	3 p21.3 p13.3 p12 q11 q12 q21.1 q22 q24.1 q25.2 q31.	a q32.1 q32.3 q42.11 q42.3 q44
	Click anywhere of to center view a	t that location. 1,007,000 bp	6,551 bp	
Galaxy113-[Filter_bis_esr1_(bar].barn.tdf	[0 - 200]			
Galaxy113-[Filter_bis_esr1_(bar].bam Coverage	[0 - 250]			 ≡
Galaxy113-{Filter_bis_esr1_(bar].bam				•••
RefSeq Genes				<u> </u>
5 tracks loaded	1.1 008 579	1		▼ 384M of 786M
Suacks loaded cm.	1.1,000,573			304M 01 700M

7

Coverage file and read extension

- BAM files **do not contain fragment location** but read location
- We need to extend reads to compute fragments coordinates before coverage analysis
- Not required for PE

Comparison between the input and the chip samples

Why we use an input...

le Genomes <u>V</u> iew	Trac <u>k</u> s Regions Tools	GenomeSpace Help					
luman hg19	▼ chr1	chr1:91,851,79	08-91,854,991 Go 🗂	t • ⊳ @ I	□ × 🖓		
	p36.31 p36.13 p35.3	p34.2 p32.3 p31.3	p31.1 p22.3 p21.3 p13.3	p12 q11 q12	2 q21.1 q22 q24.1 q25.2	q31.1 q32.1 q32.3 q42.1	1 q42.3 q44
	91,852,000 bp	1	91,853,000 bp 	— 3,190 bp —	91, 854,000 bp 	SI.	91,85
ip_ESR1_tdf	[0 - 100]		Maril a.				
out_tdf	[0 - 100]						
out_bamCoverage	[0 - 37]		/h/mh				
	•	-					-
ut_bam							
							-
p_ESR1_bamCoverage	E [0 - 108]		And the second s				
					-		
p_ESR_bam							
							-
Seq Genes		• • • • • •	• • • • • • • •	HFM1	• • • • • • •	• • • • • • •	
cks loaded chr	1:91,853,414						575M of 955M

Epigenetic modifications of histones

Discovering motifs in the peaks

Biological concepts of transcriptional regulation

Transcription factors are proteins that modulate (activate/repress) the expression of target genes through the binding on DNA cisregulatory elements

Wasserman et al, Nat Rev Genet, 2004

Transcription factor specificity

transcription factor cis-regulatory elements

Sox2/Oct4 cooperative binding

- The Sox2 and Oct4 transcription factors recognize specific DNA motifs.
- Cooperative binding: Sox2 and Oct4 closely interact to bind DNA.
- The pair of transcription factors recognizes a composite motif called the « SOCT » motif (SOx+OCT).

http://www.pdb.org/pdb/explore/explore.do?structureId=1O4X

Sox2 : from binding sites to binding motif

Collection of binding sites										
used to build the Sox2 matrix										
(TRANSFAC M01272)										
R15133	GCCCTCATTGTTATGC									
R15201	AAACTCTTTGTTTGGA									
R15231	TTCACCATTGTTCTAG									
R15267	GACTCTATTGTCTCTG									
R16367	GATATCTTTGTTTCTT									
R17099	TGCACCTTTGTTATGC									
R19276	AATTCCATTGTTATGA									
R19367	AAACTCTTTGTTTGGA									
R19510	ATGGACATTGTAATGC									
R22342	AGGCCTTTTGTCCTGG									
R22344	TGTGCTTTTGTNNNNN									
R22359	CTCAACTTTGTAATTT									
R22961	GCAGCCATTGTGATGC									
R23679	CACCCCTTTGTTATGC									
R25928	TTTTCTATTGTTTTTA									
R27428	AAAGGCATTGTGTTTC									

Position-specific scoring matrix (PSSM)

A	6	7	4	4	2	0	8	0	0	0	0	2	7	0	1	4
С	2	2	6	5	9	12	0	0	0	0	0	2	2	2	0	6
G	4	3	2	4	1	0	0	0	0	16	0	2	0	2	9	3
т	4	4	4	3	4	4	8	16	16	0	16	9	6	11	5	2

"Family" binding motifs (FBM)

- In addition to TF-specific matrices, TRANSFAC contains matrices representing the "consensus" of the binding specificity for several transcription factors belonging to the OCT family.
- This matrix was built from 55 sites, collected from different organisms (mouse, human, cat, xenopus, ...).

Collection of binding sites used to build the motif of the OCT family (TRANSFAC M00795) R00306TAATTAGCATA R00551ATATTTGCATT R00662TTATTTGCATA R00664TCATTTGCATA R00666ACATTTGCATA R00814TCGTTAGCATG R00815CGCATGGCATC R00820GGAATTCCATT R00824CGTATCTCATT R00834TTATTTGCATA R00842GGATTTGCATA R00855GTATTTGCATA R00872TAATTTGCATT R00888CGATTTGCATA R00893TGATTTGCATA ... 40 other sites

Position-specific scoring matrix (PSSM)

Α	10	14	37	6	7	6	11	3	53	1	27
с	7	12	7	2	5	2	3	50	0	1	4
G	10	15	2	0	1	2	34	0	0	1	10
т	28	14	9	47	42	45	7	2	2	52	14

17

De novo motif discovery

De novo motif discovery

- Find exceptional motifs based on the sequence only
- (No prior knowledge of the motif to look for)
- Criteria of exceptionality:
 - *Over-/under-representation:* higher/lower frequency than expected by chance
 - **Position bias:** concentration at specific positions relative to some reference coordinates (e.g. TSS, peak center, ...).

Some motif discovery tools

- MEME (Bailey et al., 1994)
- RSAT oligo-analysis (van Helden et al., 1998)
- AlignACE (Roth et al. 1998)
- RSAT position-analysis (van Helden et al., 2000)
- Weeder (Pavesi et al. 2001)
- MotifSampler (Thijs et al., 2001)
- ... many others

Motif analysis on ChIP-seq peaks

- *Motif discovery* from peak sequences, without a priori ("de novo" analysis).
 - Check if the *expected motif* (ChIP-ped factor) can be discovered from the peaks.
 - If not, evaluate if the experiment and bioinformatics treatment was OK (e.g. functional enrichment).
 - Improve annotated motifs
 - Obtain a well-documented motifs (built from thousands of sites), supposedly more reliable than "classical" motifs build from individual experiments (e.g. 10 sites from footprints and EMSA).
 - Main annotation path for recent motif database releases (JASPAR, TRANSFAC, ...).
 - Discover *partner transcription factors*.
- Differential motif discovery
 - Discover differentially represented motifs between a peak set of interest (*test*) compared to another one (*control*).
- Peak scanning
 - Goal: identify binding sites within the peaks.
 - Typical ChIP-seq peak: ~100 to 1000bp Actual binding site: 6 to 10 bp.
- *Peak enrichment* for known motifs
 - Scan sequences to identify putative binding sites for TFs known to interact.
 - Compare observed/expected number of sites.

Regulatory sequence Analysis Tools (<u>http://rsat.eu/</u>)

Regulatory Sequence Analysis Tools

Welcome to Regulatory Sequence Analysis Tools (RSAT).

This web site provides a series of modular computer programs specifically designed for the detection of regulatory signals in non-coding sequences. RSAT servers have been up and running since 1997. The project was initiated by Jacques van Helden, and is now pursued by the RSAT team.

Choose a server

New ! January 2015: we are in the process of re-organising our mirror servers into taxon-specific servers, to better suit the drastic increase of available genomes.

maintained by TAGC - Université Aix Marseilles, France

maintained by Ecole Normale Supérieure Paris, France

RSAT 4648 Bacteria + 235

maintained by RegulonDEArchaeaa, Mexico

maintained by Bruno Contreras Moreira, Spain

RSAT Teaching

maintained by SLU Global Bioinformatics Center, Uppsala, Sweden

Citing RSAT complete suite of tools:

- Thomas-Chollier M, Defrance M, Medina-Rivera A, Sand O, Herrmann C, Thieffry D, van Helden J. (2011) RSAT 2011: regulatory sequence analysis tools. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W86-91. [Pubmed 21715389] [Full text]
- Thomas-Chollier, M., Sand, O., Turatsinze, J. V., Janky, R., Defrance, M., Vervisch, E., Brohee, S. & van Helden, J. (2008). RSAT: regulatory sequence analysis tools. Nucleic Acids Res. [Pubmed 18495751] [Full text]
- van Helden, J. (2003). Regulatory sequence analysis tools. Nucleic Acids Res. 2003 Jul 1;31(13):3593-6. [Pubmed 12824373] [Full text] [pdf]

For citing individual tools: the reference of each tool is indicated on top of their query form.

Contributors From ULB

Postdoc

Postdoc

Professor

Morgane

Thomas-Chollier

PhD student+postdoc

Postddoc

Myriam Loubriat

Premier assistant

Didier Gonze

Secretary

Professor Emeritus

Alejandra Medina

PhD Student

co-direction Mexico

Leon Juvenal HajingaboE PhD Student

Maud Vidick PhD Student (co-direction)

Elodie Darbo PhD Student co-direction Marseille

Jean Valéry Turatsinze PhD student

Postdoc

Matthieu Defrance

Collaborators

Bruno André (ULB, Bruxelles, Belgium) Initiation of the RSAT project. Conception of oligo-analysis. ULB

Denis Thieffry (ENS, Paris, France) ChIP-seq tools + regulatory networks.

Alejandra Medina-Rivera (CCG, Cuernavaca -Mexico) Evaluation of matrix quality. Phylogenetic footprints in

Bruno Contreras (CSIC, Saragossa, Spain)

Jaime Castro-Mondragon (PhD at TAGC, Marseille, France)

Carl Herrmann (TAGC, Marseille, France) ChIP-seq analysis (peak-motifs, compare-matrices).

Elodie Darbo (TAGC, Marseille, France) Analysis of co-expression clusters + ChIP-seq data (transcription factors, chromatin marks).

Lionel Spinelli (TAGC, Marseille, France) Development of peak-footprints.

Cei Abreu-Goodger (Sanger Institute, Hinxton, UK) Evaluation of matrix quality on bacterial regulons.

Peak-motifs

- A workflow enabling to discover motifs in large sequence sets (tens of Mb) resulting from ChIP-seq experiments.
- Complementary pattern discovery criteria
 - Global over-representation
 - Positional biases
 - Local over-representation
- Links from motifs to putative binding factors
 - motif databases
 - user-specified reference motifs
- **Prediction of binding sites** within the peaks.
 - Inspect distribution around peak centers
 - Can be loaded as UCSC track
- Interfaces
 - Web interface
 - Stand-alone (Unix command-line)
 - Web services (SOAP/WSDL)
 - Virtual Machine for VirtualBox
 - Virtual machine at the IFB cloud
 - Soon: Debian package
 - Soon: Docker container
- 1. Thomas-Chollier M, Herrmann C, Defrance M, Sand O, Thieffry D, van Helden J. 2012. RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets. Nucleic Acids Res 40(4): e31.
- Thomas-Chollier, M., Darbo, E., Herrmann, C., Defrance, M., Thieffry, D. and van Helden, J. (2012).
 A complete workflow for the analysis of full-size ChIP-seq (and similar) data sets using peak-motifs. *Nature Protocols*, 7, 1551–1568.

Peak-motifs: why providing yet another tool?

Program	ChipMunk	CompleteMotifs	MEME-ChIP	MICSA	GimmeMotifs	RSAT peak-motifs
Web interface	yes	yes	yes	150	no	yes
Size limitation	100kb (web site)	500kb (web site)	unrestricted, but motif discovery restricted to 600 peaks clipped to 100bo	motif discovery restricted to a few hundred base pairs	15	unrestricted (Web site tested with 22 Mb)
Stand-alone version	yes	110	yes	yes	yes	yes
Tasks						
peak finding	no.	no	110:	yes		00
annotation of peak-flanking genes		yes	00			1h0
sequence composition (mono- and di-nucleotides)		00	00			yes
motif discovery	yes	yes	yes	yes	yes	yes
enrichment in motifs from databases	rvo.	yes	yes	- 20au		. 150
enrichment in discovered motifs		00	no			yes
peak scoring		no	yes	yes		th0
motif clustering		00	no		yes	rio .
comparison discovered motifs / motif DB		00	yes		yes	yes
sequence scanning for site prediction		ino	yes			yes
positional distribution of sites inside peaks	no	yes	no		yes	yes
visualization in genome browsers		yes	00		00	yes
Motif discovery algorithms	ChipMunk	ChipMunk MEME Weeder	MEME DREME	MEME	MEME Weeder MotifSampler BioProspector Gadem Improbizer MDmodule Trawler Mono	RSAT oligo-analysis RSAT dyad-analysis RSAT position-analysis RSAT local-word-analysis + in stand-alone version: MEME ChIPMunk

26

Peak-motifs: why providing yet another tool?

- Fast and scalable
- Treat full-size datasets
- Complete pipeline
 - Peak properties (nucleotide, dinucleotide composition, lengths)
 - Motif discovery
 - Comparison with known set of the set of th
 - Peak scanning
- Accessible to non-specialists
 - Demo buttons
 - Tutorials & Protocols
 - Human-readable HTML report with links to all result files.

Transfac SOCT

Time complexity of motif discovery algorithms

Peak-motifs: scalability

- Fast and scalable
- Treat full-size datasets
- Using 4 complementary algorithms
 - Global over-representation
 - oligo-analysis
 - dyad-analysis (spaced motifs)
 - Positional bias
 - position-analysis
 - local-words

Thomas-Chollier, Herrmann, Defrance, Sand, Thieffry, van Helden Nucleic Acids Research, 2012

Motif discovery: k-mer over-representation

Motif discovery: k-mer position biases

Direct versus indirect binding

• ChIP-seq does not necessarily reveal **direct binding**: The motif of the targeted TF is not always found in peaks!

Direct binding

Indirect binding

Negative Controls

Negative Controls in biology

One example from a multitude: Wellik and Mario R Capecchi, Science, 2003.

Fig. 1. Axial skeletons of Hox10 and Hox11 triple mutants at embryonic day 18.5 (E18.5). Ventral views of the axial skeleton from the lower thoracic region through the early caudal region of a Hox10 triple mutant (A), a control (F), and a Hox11 triple mutant (K) are shown. Yellow asterisks indicate lumbar vertebrae; red asterisks indicate sacral vertebrae. A five-allele mutant from the Hox10 and Hox11 paralogous mutant group is shown in (P) and (Q), respectively (red arrows indicate sacral wing formation). Analogous vertebrae were dissected from the control and from each triple mutant to compare single vertebral identities. The 19th vertebral element, normally T12, is shown in (B), (G), and (L). The 23rd element, normally L3, is shown in (C), (H), and (M). The 28th element, normally S2, is

Negative and positive controls in bioinformatics

- RSAT NeAT RSAT New items > view all tools Genomes and genes Sequence tools Matrix tools **Build control sets** random gene selection random sequence random genome fragments random-motif permute-matrix random-sites implant-sites
- **Negative control**: quantify the capability of the program to return a negative answer when there are no regulatory elements.
 - Artificial sequences
 - RSAT *random-sequences* (Markov models to mimic k-mer frequencies of the organism)
 - \circ Biological sequences without common regulation
 - RSAT *random-genes* (negative control for expression clusters)
 - RSAT *random-genome-fragments* (negative controls for ChIP-seq)
 - Randomized motifs: column permutations preserve nucleotide frequencies and information content
 - RSAT *permute-matrix*
 - **Positive control**: quantify the capability of the program to detect known regulatory elements
 - Annotated sites (e.g. sites from TRANSFAC) in their original context (promoter sequences).
 - $\circ \quad \ \ {\rm Annotated\ sites\ implanted\ in\ other\ context}$
 - Biological sequences (random selection).
 - Artificial sequences.
 - \circ Artificial sites implanted in artificial sequences.
 - RSAT *random-motif*
 - RSAT *random-sites*
 - RSAT *implant-sites*

RSAT random-genome-fragments

- Select a set of fragments with random positions in a given genome, and return their coordinates and/or sequences
- Adapted to chip-seq ?
 - Yes: same number of peaks + same size
 - No: composition of the sequences (nucleotides, k-mers) may change depends on genomic regions
 - 0
- Complexify the control
 - Make sure no peak is covered
 - Take regions close / far from the peaks
 - Maintain same composition
 - Maintain same dataset size
 - …
Why is it important?

NATURE | BRIEF COMMUNICATION ARISING

< \boxtimes

Universality of core promoter elements?

Matthias Siebert & Johannes Söding

Affiliations | Contributions | Corresponding author

Nature 511, E11–E12 (24 July 2014) | doi:10.1038/nature13587 Received 06 December 2013 | Accepted 12 June 2014 | Published online 23 July 2014 Retraction (September, 2014)

```
🖄 PDF 🔮 Citation 📲 Reprints 🔍 Rights & permissions 📓 Article metrics
```

ARISING FROM B. J. Venters & B. F. Pugh Nature 502, 53-58 (2013); doi:10.1038/nature12535

We show that the claimed universality of CPEs is explained by the low specificities of the patterns used and that the same match frequencies are obtained with two negative controls (randomized sequences and scrambled patterns). Our analyses also cast doubt on the biological significance of most of the 150,753 non-messenger-RNA-associated ChIP-exo peaks, 72% of which lie within repetitive regions.

To prevent this

П	ault	Internationa	l weekly journal of :	science			
Home	News & Comment	Research	Careers & Jobs	Current Issue	Archive	Audio & Video	For A
Archive	Volume 513 Volume 513	ssue 7518	> Retractions >	Article			

NATURE | RETRACTION

Retraction: Genomic organization of human transcription initiation complexes

Bryan J. Venters & B. Franklin Pugh

Nature 513, 444 (18 September 2014) | doi:10.1038/nature13588 Published online 23 July 2014

🖹 PDF 📩 Citation 📲 Reprints 🔍 Rights & permissions 📓 Article metrics

Subject terms: Transcriptional regulatory elements

Nature 502, 53-58 (2013); doi:10.1038/nature12535

We reported the presence of degenerate versions of four well known core promoter elements (BRE_u, TATA, BRE_a and INR) at most measured TFIIB binding locations found across the human genome. However, it was brought to our attention by Matthias Siebert and Johannes Söding in the accompanying Brief Communication Arising (*Nature* 511, E11–E12, http://dx.doi.org/10.1038 /nature13587; 2014) that the core-promoter-element analyses that led to this conclusion were not correctly designed. Consequently, the individual core promoter elements were not statistically validated, and therefore there is no evidence of specificity for most reported core-promoter-element locations. To the best of our knowledge, the raw and processed human TFIIB, TBP and Pol II ChIP-exo data are valid, but subject to standard false discovery considerations. We therefore retract the paper. We sincerely apologize for adverse consequences that may have arisen from the error in our analyses.

Supplementary information

To go further

- The next slides explain step by step the algorithm behind oligo-analysis
- Peak-motifs : follow this protocol to grasp the detailed tweaking of parameters (send us an email to have free access to the PDF if necessary)
 - Thomas-Chollier et al. A complete workflow for the analysis of full-size ChIP-seq (and similar) data sets using peak-motifs. Nature Protocols 7, 1551–1568 (2012).
- Description and evaluation of peak-motifs
 - Matrix-quality : RSAT program that can be used to evaluate the enrichment of motifs in peaks
- Description of the RSAT software suite
 - Medina-Rivera A, Abreu-Goodger C, Thomas-Chollier M, Salgado H, Collado-Vides J, van Helden J.Theoretical and empirical quality assessment of transcription factor-binding motifs.Nucleic Acids Res. 2011 Feb;39(3):808-24. doi: 10.1093/nar/gkq710. Epub 2010 Oct 4.
- Tutorial for ECCB 2014 : <u>http://rsat.ulb.ac.be/eccb14/</u>

More info: RSAT descriptions + protocols

- Medina-Rivera, A., Defrance, M., Sand, O., Herrmann, C., Castro-Mondragon, J.A., Delerce, J., Jaeger, S., Blanchet, C., Vincens, P., Caron, C., et al. (2015) RSAT 2015: Regulatory Sequence Analysis Tools. Nucleic Acids Res, 43, W50–6.
- 2. Thomas-Chollier, M., Darbo, E., Herrmann, C., Defrance, M., Thieffry, D. and van Helden, J. (2012) A complete workflow for the analysis of full-size ChIP-seq (and similar) data sets using peak-motifs. Nature Protocols, 7, 1551–1568.
- **3**. Thomas-Chollier,M., Herrmann,C., Defrance,M., Sand,O., Thieffry,D. and van Helden,J. (2012) RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets. Nucleic Acids Res, 40, e31–e31.
- 4. Thomas-Chollier, M., Defrance, M., Medina-Rivera, A., Sand, O., Herrmann, C., Thieffry, D. and van Helden, J. (2011) RSAT 2011: regulatory sequence analysis tools. Nucleic Acids Res, 39, W86–91.
- 5. Thomas-Chollier, M., Sand, O., Turatsinze, J.-V., Janky, R., Defrance, M., Vervisch, E., Brohée, S. and van Helden, J. (2008) RSAT: regulatory sequence analysis tools. Nucleic Acids Res, 36, W119–27.
- 6. Sand,O., Thomas-Chollier,M., Vervisch,E. and van Helden,J. (2008) Analyzing multiple data sets by interconnecting RSAT programs via SOAP Web services: an example with ChIP-chip data. Nature Protocols, 3, 1604–1615.
- 7. Turatsinze, J.-V., Thomas-Chollier, M., Defrance, M. and van Helden, J. (2008) Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules. Nature Protocols, 3, 1578–1588.
- 8. Defrance, M., Janky, R., Sand, O. and van Helden, J. (2008) Using RSAT oligo-analysis and dyad-analysis tools to discover regulatory signals in nucleic sequences. Nature Protocols, 3, 1589–1603.

Principle: detect unexpected patterns

- Binding sites are represented as "words" = "oligonucleotides"="k-mer"
 - e.g. **acgtga** is a 6-mer
- Signal is likely to be **more frequent** in the upstream regions of the co-regulated genes than in a random selection of genes
- We will thus detect over-represented words (k-mers, oligonucleotides).

Motif discovery using word counting

Idea:

motifs corresponding to binding sites are generally repeated in the dataset \rightarrow capture this statistical signal

Algorithm

count occurrences of all k-mers in a set of related sequences (promoters of co-expressed genes, in ChIP bound regions,...)

Let's take an example (yeast Saccharomyces cerevisiae)

- NIT
 - 7 genes expressed under low nitrogen conditions
- MET
 - 10 genes expressed in absence of methionine
- PHO
 - 5 genes expressed under phosphate stress

	PHO		MET		NIT
aaaaaa tttttt	51	aaaaaa ttttt	: 105	aaaaaa ttttt	80
aaaaag cttttt	15	atatat atata	at 41	cttatc gataag	26
aagaaa tttctt	14	gaaaaa tttt	c 40	tatata tatata	22
gaaaaa tttttc	13	tatata tata	a 40	ataaga tcttat	20
tgccaa ttggca	12	aaaaat attt	t 35	aagaaa tttctt	20
aaaaat attttt	12	aagaaa tttci	t 29	gaaaaa tttttc	19
aaatta taattt	12	agaaaa tttto	ct 28	atatat atatat	19
agaaaa ttttct	11	aaaata tatti	t 26	agataa ttatct	17
caagaa ttcttg	11	aaaaag cttt	t 25	agaaaa ttttct	17
aaacgt acgttt	11	agaaat attto	ct 24	aaagaa ttcttt	16
aaagaa ttcttt	11	aaataa ttati	t 22	aaaaca tgtttt	16
acgtgc gcacgt	10	taaaaa tttti	a 21	aaaaag cttttt	15
aataat attatt	10	tgaaaa tttto	ca 21	agaaga tcttct	14
aagaag cttctt	10	ataata tatta	at 20	tgataa ttatca	14
atataa ttatat	10	atataa ttata	at 20	atataa ttatat	14

- A (too) simple approach would consist in detecting the most frequent oligonucleotides (for example hexanucleotides) for each group of upstream sequences.
- This would however lead to deceiving results.
 - In all the sequence sets, the same kind of patterns are selected: AT-rich hexanucleotides.

	PHO		MET		NIT
aaaaaa ttttt	51	aaaaaa ttttt	105	aaaaaa ttttt	80
aaaaag cttttt	15	atatat atatat	41	cttatc gataag	26
aagaaa tttctt	14	gaaaaa tttttc	40	tatata tatata	22
gaaaaa tttttc	13	tatata tatata	40	ataaga tcttat	20
tgccaa ttggca	12	aaaaat attttt	35	aagaaa tttctt	20
aaaaat attttt	12	aagaaa tttctt	29	gaaaaa tttttc	19
aaatta taattt	12	agaaaa ttttct	28	atatat atatat	19
agaaaa ttttct	11	aaaata tatttt	26	agataa ttatct	17
caagaa ttcttg	11	aaaaag cttttt	25	agaaaa ttttct	17
aaacgt acgttt	11	agaaat atttct	24	aaagaa ttcttt	16
aaagaa ttcttt	11	aaataa ttattt	22	aaaaca tgtttt	16
acgtgc gcacgt	10	taaaaa tttta	21	aaaaag cttttt	15
aataat attatt	10	tgaaaa ttttca	21	agaaga tcttct	14
aagaag cttctt	10	ataata tattat	20	tgataa ttatca	14
atataa ttatat	10	atataa ttatat	20	atataa ttatat	14

A more relevant criterion for over-representation

- The most frequent patterns do not reveal the motifs specifically bound by specific transcription factors.
- They merely reflect the compositional biases of upstream sequences.
- A more relevant criterion for over-representation is to detect patterns which are more frequent in the upstream sequences of the selected genes (co-regulated) than the random expectation.
- The random expectation is calculated by counting the frequency of each pattern in the complete set of upstream sequences (all genes of the genome).
 => "Background"

Idea:

motifs corresponding to binding sites are generally repeated in the dataset \rightarrow capture this statistical signal

• theoretical background model (Markov Models)

Estimation of word expected frequencies from background sequences

Example:

6nt frequencies in the whole set of 6000 yeast **upstream** sequences

;seq	identifier	observed_freq occ	
aaaaaa	aaaaaa ttttt	0,00510699	14555
aaaaac	aaaaac gtttt	0,00207402	5911
aaaaag	aaaaag ctttt	0,00375191	10693
aaaaat	aaaaat atttt	0,00423577	12072
aaaaca	aaaaca tgttt	0,0019828	5651
aaaacc	aaaacc ggttt	0,00088526	2523
aaaacg	aaaacg cgttt	0,00090105	2568
aaaact	aaaact agttt	0,0014621	4167
aaaaga	aaaaga tcttt	0,00323016	9206
aaaagc	aaaagc gcttt	0,00135824	3871
aaaagg	aaaagg ccttt	0,0017849	5087
aaaagt	aaaagt acttt	0,0019035	5425
aaaata	aaaata tattt	0,00336805	9599
aaaatc	aaaatc gattt	0,00131368	3744
aaaatg	aaaatg cattt	0,00185648	5291
aaaatt	aaaatt aattt	0,00269156	7671
aaacaa	aaacaa ttgtt	0,00209999	5985
aaacac	aaacac gtgtt	0,00071684	2043
aaacag	aaacag ctgtt	0,00096491	2750
aaacat	aaacat atgtt	0,00108982	3106
aaacca	aaacca tggtt	0,00074421	2121

48

How to evaluate expected number of occurrences ?

Motif discovery using word counting

Idea:

motifs corresponding to binding sites are generally repeated in the dataset \rightarrow capture this statistical signal

Algorithm

- count occurrences of all k-mers in a set of related sequences (promoters of co-expressed genes, in ChIP bound regions,...)
- estimate the **expected number of occurrences** from a background model
 - empirical based on observed k-mer frequencies
 - theoretical background model (Markov Models)
- statistical evaluation of the deviation observed (P-value/E-value)

Statistical significance

How « big » is the surprise to observe 18 occurrences when we expect 2.95 ? How « big » is the surprise to observe 18 occurrences when expecting 2.95 ?

- at each position in the sequence, there is a probability p that the word starting at this position is ACGTGA
- we consider *n* positions
- what is the probability that k of these n positions correspond to ACGTGA ?
- Application : p = 3.4e-4 (intergenic frequencies)
 - *n* = 9000 position
 - *x* = 18 observed occurrences

Binomial distribution to measure the exceptionality of the occurrences

Sequencing

- Sequencer : Illumina HiSeq 4000
- No. of reads per run, per sample :
 - $\circ~1^{\rm st}$ run on the GAIIx : 10-20 millions of reads per lane
 - (HiSeq 2500) 4 samples per lane :~41 millions per sample
 - (HiSeq 4000) 8 samples per lane :~43 millions per sample
- Length of DNA fragment : ~200bp
- No. of cycle per run : 50

Single end or paired end?

- Single end (most of the time)
- Paired-end sequencing
 - Improve identification of duplicated reads
 - Better estimation of the fragment size distribution Increase the mapping efficiency to **repeat regions** The price!

Library prep

- Step between ChIP and sequencing.
- The goal is to prepare DNA for the sequencing.
- Starting material: ChIP sample (1-10ng of sheared DNA).

Considerations on ChIP

- Antibody
 - Antibody quality varies, even between independently prepared batches of the same antibody (Egelhofer, T. A. *et al.* 2011).
- Number of cells
 - Large numbers of cells are required for a ChIP experiment (limitation for small organisms).
- Shearing of DNA (Mnase I, sonication, Covaris): trying to narrow down the size distribution of DNA fragments

Complexity in DNA fragments

Controls

- Used mostly to filter out false positives (high level of noise)
 - Idea: potential false positive will be enriched in both treatment and control.
- A control will fail to filter out false positives if its enrichment profile is very different from the enrichment profile of false positive regions in the treatment sample.
- 3 types of controls are commonly used :
 - *'Input' DNA*: a portion of DNA sample removed prior to IP
 - *DNA from non specific IP*: DNA obtained from IP with an antibody not known to be involved in DNA binding or chromatin modification, such as IgG.
 - *Mock IP DNA*: DNA obtained from IP without antibodies.
- 'Input' most generally prefered.

Replicates

- A **minimum** of two replicates should be carried out per experiment.
- Get *biological replicates* rather than technical replicates
 - i.e. taken from an independent cell culture, embryo pool or tissue sample.

See: https://www.encodeproject.org/

ENCODE

• The **ENCyclopedia Of DNA Elements** (<u>ENCODE</u>) consortium has carried out hundreds of ChIP-seq experiments and has used this experience to develop a set of working standards and guidelines.

ENCODE Data Encyclopedia	Materials & Methods Help	Search Q
E	NCODE: Encyclopedia of D	The ENCODE (Encyclonedia of DNA Elements)
Hypersensitive Sites	WGBS methyl array Promoters Transcripts	Consortium is an international collaboration of research groups funded by the National Human Genome Research Institute (NHGRI). The goal of ENCODE is to build a comprehensive parts list of functional elements in the human genome, including elements that act at the protein and RNA levels, and regulatory elements that control cells and circumstances in which a gene is active. Get Started
HUMAN MOUSE WORM	Based on an image by Darryl Leja (NHGRI), Ian Dunham (EBI), Michael Pazin (NHGRI)	

Sequencing depth

- Estimate the required depth depending on: • ChIP-ped protein

 - 0
 - Expected profile type Expected number of binding sites \bigcirc
 - \bigcirc Genome size
- Examples
 - For human genome Ο
 - 20 million uniquely mapped read sequences for point-source peaks.
 - 40 million for broad-source peaks.
 - For fly genome: 8 million reads. For worm genome: 10 million Ο
 - Ο reads.

Nature Reviews | Genetics

How to deal with replicates?

How to deal with replicates

Analyze samples separately and take union or intersection of resulting peaks Merge samples prior to the peak calling (e.g recommended by MACS)

Sample 1.b

IDR

- IDR = Irreproducible Discovery Rate.
- Measures (in)consistency between replicates.
- Uses reproducibility between score rankings of peaks in the respective replicates to determine an optimal cutoff for significance.

• Idea:

- The most significant peaks are expected to have high consistency between replicates.
- The peaks with low significance are expected to have low consistency.

IDR

Α

3.0

2.5

log(signal) Rep2 0 1.5 2.0

1.0

0.5

0.5

1.0

.0 1.5 2.0 log(signal) Rep1

2.0

RAD21 Replicates (high reproducibility) В С 0.6 Peak rank Rep2 0000 20000 30000 40000 50000 60000 0.4 IDR 0.2 IDR<=1%? IDR<=1%?

10000 20000 30000 40000 50000 60000 Peak rank Rep1

FALSE

TRUE

0.0

20000

num of significant peaks

50000

SPT20 Replicates (low reproducibility)

(!) IDR doesn't work on broad source data!

FALSE

• TRUE

2.5

Galaxy: Annotate peaks

- Input
 - bed file with peaks
- Output
 - Fraction of peaks per genomic elements and annotated peaks

Chromosomo

Ctort.

End

Chromosome	Start	Enu	WidX	Score	DISCISS	Type	rypeintra
chr1	3001827	3002328	3002077	55.28	659502	intergenic	NA
chr1	3067471	3067948	3067709	50.67	593870	intergenic	NA
chr1	3660316	3662844	3661580	352.43	-1	promoter	NA
chr1	3842462	3842994	3842728	59.21	-181149	intergenic	NA
chr1	3877254	3877710	3877482	52.72	-215903	intergenic	NA
chr1	3939314	3939679	3939496	82.99	-277917	intergenic	NA
chr1	4206037	4206512	4206274	50.86	144121	intergenic	NA
chr1	4481463	4484213	4482838	268.57	3656	intragenic	intron
chr1	4486799	4487684	4487241	88.18	-747	promoter	NA
chr1	4561258	4562489	4561873	236.23	-75379	intergenic	NA
chr1	4635092	4635552	4635322	52.32	140485	intergenic	NA
chr1	4760253	4761284	4760768	111.13	15039	5kbDownstream	NA
chr1	4773759	4776746	4775252	540.12	555	immediateDownstream	f_intron
chr1	4797157	4800182	4798669	249.77	696	immediateDownstream	intron
chr1	4841219	4842788	4842003	156.84	-6405	enhancer	NA
chr1	4846807	4849844	4848325	377.92	-83	promoter	NA
chr1	4873314	4873950	4873632	66.94	25224	intragenic	intron
chr1	4885079	4885564	4885321	64.12	36913	intragenic	intron

From

Man

DietTEE

Tuno

Tunalatra

HOMER

Motif discovery and NGS data analysis

Simple Combinations of Lineage-Determining Transcription Factors Prime *cis*-Regulatory Elements Required for Macrophage and B Cell Identities

Sven Heinz,^{1,7} Christopher Benner,^{1,7} Nathanael Spann,^{1,7} Eric Bertolino,⁴ Yin C. Lin,³ Peter Laslo,⁶ Jason X. Cheng,⁴ Cornelis Murre,³ Harinder Singh,^{4,5} and Christopher K. Glass^{1,2,*}

H3K4me2 Distribution near AR peaks 1.2 bp per peak) H3K4me2-control/ Coverage 1 H3K4me2-dht-16h/ Coverage 0.8 (per pth 0.6 č ent 0.4 aqm 0.2 ChIPn -1500 -1000 -500 0 500 1000 1500 Distance from AR peak

	A	B	C	D	E	F	G	н		J	K	L	M	N	0	P	<u>_</u>	R
1	PeakID	Chr	Start	End	Strand	Peak Sco	Focus Ra	Annotation	Detailed Anno	Distance to 1	Nearest Pron	PromoterID	Nearest Unig	Nearest Refs	Nearest Ense	Gene Name	Gene Alias	Gene Descrip
2	chr18-1	chr18	69007968	69008268	+	593	0.939	intron (NR_C	3- intron (NR_03-	74595	NR_034133	400655	Hs.579378	NR_034133		LOC400655		hypothetical
3	chr9-1	chr9	88209966	88210266	+	531.9	0.946	Intergenic	Intergenic	-50894	NM_001185	79670	Hs.597057	NM_001185	ENSG00000	ZCCHC6	DKFZp666B1	zinc finger, C
4	chr14-1	chr14	62337073	62337373	+	505.4	0.918	intron (NM_	17 intron (NM_17	244485	NM_172375	27133	Hs.27043	NM_139318	ENSG000001	KCNH5	EAG2 H-EAG	potassium vc
5	chr17-1	chr17	5076243	5076543	+	492.1	0.936	intron (NR_C	3- intron (NR_03-	2414	NM_207103	388325	Hs.462080	NM_207103	ENSG000001	C17orf87	FLJ32580 M	chromosome
6	chr17-2	chr17	47851714	47852014	+	476.2	0.824	Intergenic	Intergenic	-259488	NM_001082	56934	Hs.463466	NM_001082	ENSG000001	CA10	CA-RPX CAR	carbonic anh
7	chr10-1	chr10	98420680	98420980	+	474.9	0.967	intron (NM_	15 intron (NM_15	49439	NM_152309	118788	Hs.310456	NM_152309	ENSG000001	PIK3AP1	BCAP RP11-	phosphoinos
8	chr9-2	chr9	81294389	81294689	+	456.3	0.957	Intergenic	Intergenic	-82159	NM_007005	7091	Hs.444213	NM_007005	ENSG000001	TLE4	BCE-1 BCE1	transducin-li
9	chr14-2	chr14	36817736	36818036	+	452.3	0.757	intron (NM_	13 intron (NM_13	81017	NM_001195	145282	Hs.660396	NM_001195	ENSG000001	MIPOL1	DKFZp313M2	mirror-image
10	chr18-2	chr18	20049825	20050125	+	449.7	0.853	intron (NM_	OE intron (NM_OE	56219	NM_018030	114876	Hs.370725	NM_018030	ENSG000001	OSBPL1A	FU10217 OF	oxysterol bin
11	chr7-1	chr7	12226829	12227129	+	445.7	0.901	intron (NM_	01 intron (NM_01	9606	NM_001134	54664	Hs.396358	NM_001134	ENSG000001	TMEM106B	FU11273 M	transmembra
12	chr14-3	chr14	88712188	88712488	+	443.1	0.844	intron (NM_	OC intron (NM_OC	240869	NM_005197	1112	Hs.621371	NM_001085	ENSG00000	FOXN3	C14orf116 C	forkhead box
13	chr18-3	chr18	62951924	62952224	+	443.1	0.947	Intergenic	Intergenic	-382689	NR_033921	643542	Hs.652901	NR_033921		LOC643542	-	hypothetical
14	chr3-1	chr3	32196769	32197069	+	443.1	0.87	Intergenic	Intergenic	-58256	NM_178868	152189	Hs.154986	NM_178868	ENSG000001	CMTM8	CKLFSF8 CKL	CKLF-like MA
15	chr11-1	chr11	110685448	110685748	+	425.8	0.907	Intergenic	Intergenic	-9849	NR_034154	399948	Hs.729225	NR_034154		C11orf92	DKFZp781P1	chromosome
16	chr4-1	chr4	81755366	81755666	+	423.2	0.908	intron (NM_	15 intron (NM_15	279618	NM_152770	255119	Hs.527104	NM_152770	ENSG000001	C4orf22	MGC35043	chromosome

http://homer.salk.edu/homer \$7

HOMER: annotate peaks

		A	B	C	D	E	F	G	Н	1	J		K	L	M	N	0	Р	Q	R
	1	PeakID	Chr	Start	End	Strand	Peak Sco	Focus Ra	Annotation	Detailed Ann	o Distance t	o T Ne	arest Pror	PromoterID	Nearest Uni	g Nearest Refs	Nearest Ense	Gene Name	Gene Alias	Gene Descrip
	2	chr18-1	chr18	69007968	69008268	+	593	0.939	intron (NR_C	03 intron (NR_0	745	95 NR	034133	400655	Hs.579378	NR_034133	ENC COODOO	LOC400655	-	hypothetical
	3	chr9-1	chr14	62337073	62337373	†.	505.4	0.946	intergenic	17 introp (NM	-5083	14 ININ	1 172375	27133	Hs 27043	NM 139318	ENSG000001	KCNH5	EAG21H-EAG	2 potassium vo
	5	chr17-1	chr17	5076243	5076543	+	492.1	0.936	intron (NR C	3- intron (NR (3. 24	14 NN	1 207103	388325	Hs.462080	NM 207103	ENSG000001	C17orf87	FLI325801M	chromosome
	6	chr17-2	chr17	47851714	47852014	+	476.2	0.824	Intergenic	Intergenic	-2594	38 NN	A_001082!	56934	Hs.463466	NM_001082	ENSG000001	CA10	CA-RPX CAP	carbonic anh
	7	chr10-1	chr10	98420680	98420980	+	474.9	0.967	intron (NM_	15 intron (NM_	15 4943	89 NN	A_152309	118788	Hs.310456	NM_152309	ENSG000001	PIK3AP1	BCAP RP11	phosphoinos
	8	chr9-2	chr9	81294389	81294689	+	456.3	0.957	Intergenic	Intergenic	-821	59 NN	A_007005	7091	Hs.444213	NM_007005	ENSG000001	TLE4	BCE-1 BCE1	transducin-li
	9	chr14-2	chr14	36817736	36818036	+	452.3	0.757	intron (NM_	13 intron (NM_	13 810	17 NN	A_001195	145282	Hs.660396	NM_001195	ENSG000001	MIPOL1	DKFZp313M	mirror-image
	10	chr18-2	chr18	20049825	20050125	+	449.7	0.853	intron (NM_	OE intron (NM_	08 562	19 NN	A_001124	114876	Hs.370725	NM_018030	ENSG000001	OSBPL1A	FU10217 0	Foxysterol bin
Peak ID	12	chr14-3	chr14	88712188	88712488	+	443.1	0.844	intron (NM	OC intron (NM	01 90	59 NN	A 005197	1112	Hs.621371	NM 001085	ENSG000001	FOXN3	C14orf1161	forkhead box
	13	chr18-3	chr18	62951924	62952224	+	443.1	0.947	Intergenic	Intergenic	-3826	39 NR	033921	643542	Hs.652901	NR_033921		LOC643542	-	hypothetical
Chromosome	14	chr3-1	chr3	32196769	32197069	+	443.1	0.87	Intergenic	Intergenic	-5825	6 NN	A_178868	152189	Hs.154986	NM_178868	ENSG000001	CMTM8	CKLFSF8 CK	L CKLF-like MA
Peak start position	15	chr11-1	chr11	110685448	110685748	+	425.8	0.907	Intergenic	Intergenic	-98	49 NR	034154	399948	Hs.729225	NR_034154		C11orf92	DKFZp781P1	L chromosome
Deals and nealtien	16	chr4-1	chr4	81755366	81755666	+	423.2	0.908	intron (NM_	15 intron (NM_	15 2796	18 NN	M_152770	255119	Hs.527104	NM_152770	ENSG000001	C4orf22	MGC35043	chromosome
Peak end position																				
Strand																				
Peak Score																				
	0																			
FDR/Peak Focus Ratio/Regi	on S	ize																		
Annotation (i.e. Exon. Intron.)																			
Detailed Annotation (Exon. I	ntron	oto	+ Cr	G Ielan	de ror	haat	e ato	•)												
		1010.			u3, 10p	Juan	.5, 010	.)												
Distance to nearest RefSeq	ISS																			
Nearest TSS: Native ID of ar	nota	ation 1	file																	
Nearest TSS: Entrez Gene I)																			
Negroot TSS: Unigona ID																				
Nearest 135. Unigene ID																				

14 Nearest TSS: RefSeq ID

- 15 Nearest TSS: Ensembl ID
- 16 Nearest TSS: Gene Symbol
- 17 Nearest TSS: Gene Aliases
- 18 Nearest TSS: Gene description
- 19 Additional columns depend on options selected when running the program.

HOMER: compare peaks

Based on signal distribution, are there any classes of genomic regions?

- How does the signal (read counts) distribute around or inside:
 - Transcriptional start sites (TSS)
 - Transcriptional termination sites (TTS)
 - Gene bodies, exons, introns
- Tools:
 - Deeptools (heatmapper)
 - seqMINER
- Unsupervised clustering methods (e.g k-means)
 - Discover some underlying classes of genomic regions

Clustering

- Group together genomic regions with similar enrichments
- In a single sample or multiple samples
- E.g:

Clustering

seqMINER

 User friendly interactive interface with multiple graphical representations

33881 mouse

- Multiple dataset comparison
- Java, multi-platform

