

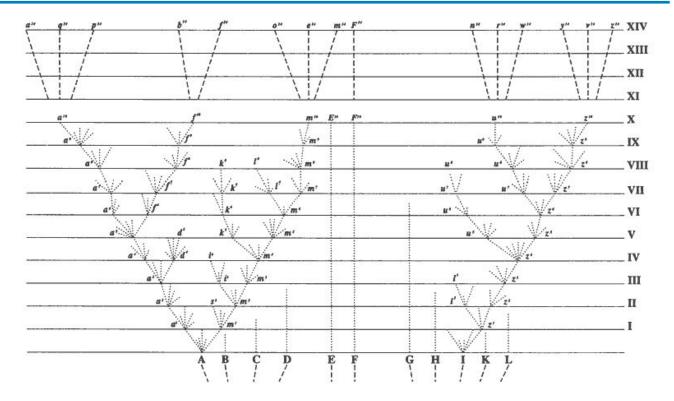
Chapitre 4. Inférence phylogénétique: retracer l'évolution à partir des séquences

Introduction à la bioinformatique (UE SSV3U15) 2024-2025

Jacques van Helden

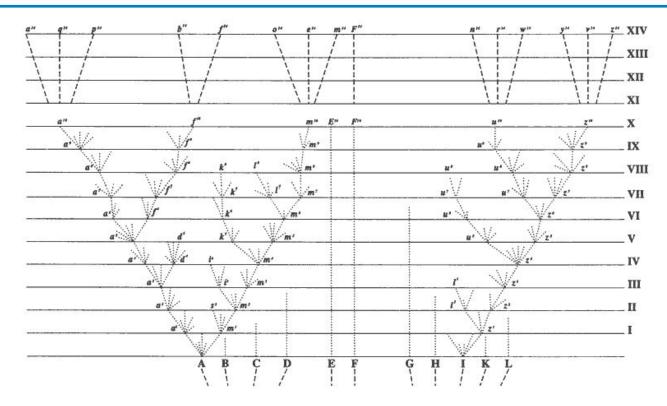
Aix-Marseille Université orcid.org/0000-0002-8799-8584

Contenu de ce chapitre

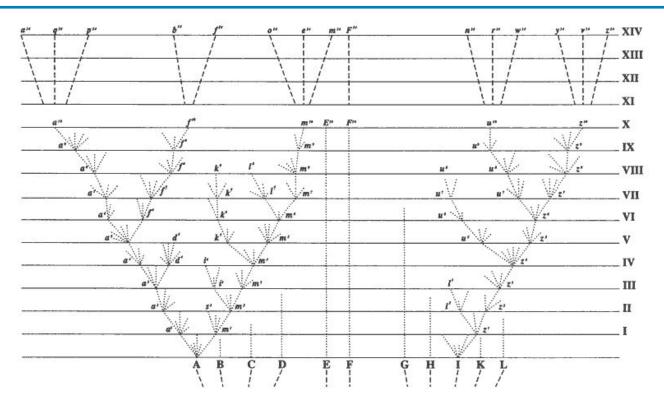

- 1. Représentations arborescentes de l'évolution
- 2. Concepts: homologie, analogie, paralogie, orthologie
- 3. Les duplications à l'origine de l'innovation
- 4. Phylogénomique : retracer l'évolution des espèces à partir des séquences génomiques
- 5. Retracer l'origine de SARS-CoV-2 dans les génomes des coronavirus
- Pseudogènes ("gènes fossiles")
- 7. Quand les branches de l'arbre du vivant s'entrecroisent

Représentations arborescentes de l'évolution

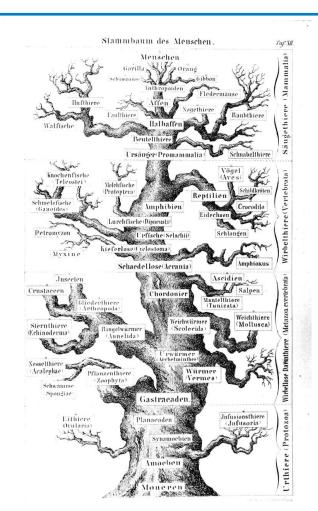
La divergence des caractères


La seule figure de l'Origine des Espèces (C.Darwin, 1859) est une représentation conceptuelle de l'arbre de la vie.

La divergence des caractères

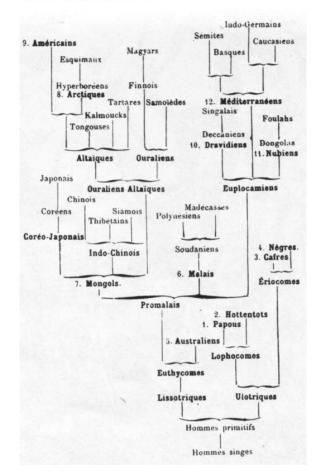

Il s'agit d'un arbre synchrone : chaque niveau horizontal représente un moment donné.

- La racine correspond aux époques les plus anciennes.
- Le niveau le plus élevé correspond au présent.
- A chaque époque on trouve des organismes de différents niveaux de complexité. La hauteur ne représente donc pas une complexité ou un "niveau d' évolution"

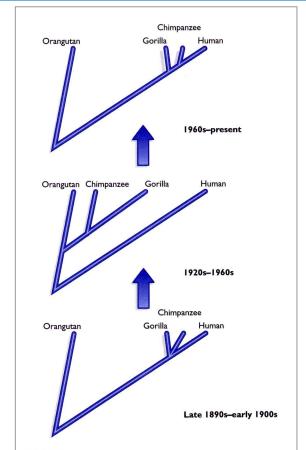

La divergence des caractères

- La plupart des branches sont abortives
- Évolution graduelle par accumulation de variations (mutations) le long des branches.
- Juste après un branchement, on a de très petites différences entre les variétés.
- Les observations dont on dispose sont généralement fragmentaires.
- Elles ne sont pas forcément placées sur une trajectoire linéaire depuis un ancêtre donné jusqu'aux espèces actuelles.

Anthropogenie


- Dans son livre « Anthropogenie » (1874), Ernst Haëckel représente les groupes taxonomiques sur un arbre, mais celui-ci présente une différence fondamentale avec celui de Darwin.
- Les différentes hauteurs de l'arbre ne représentent plus des strates temporelles, mais des degrés d'évolution.
- Haëckel place l'homme au sommet de cet arbre, entouré des primates anthropoïdes (Chimpanzé, Gorille, Orang-Outang, Gibbon).

Arbre généalogique des douze « espèces » humaines


- Dans son « Histoire de la création », Haeckel déclare qu'il y a 12 espèces humaines et 36 races principales (dia suivante).
- Pourquoi parle-t-on de 12 espèces humaines ?
- D'après la définition biologique (critère d'interfécondité), tous les humains appartiennent à une seule espèce.
- Que signifie la hauteur des branches ?
- Les époques d'apparition des groupes dans leurs territoires respectifs ? Si oui, pourquoi les Hauts-Allemands et les saxons apparaissent-ils au sommet ? Leur apparition est-elle plus tardive que celle des néerlandais ?
- Un« degré d'évolution » de ces groupes? Si oui, sur quels critères est-il mesuré?

ARBRE GENEALOGIQUE DES DOUZE ESPECES HUMAINES

Perception des relations entre hominidés

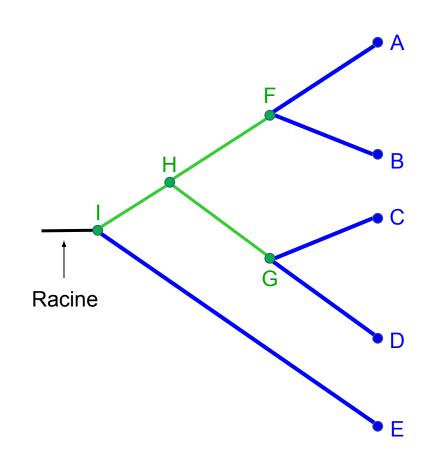
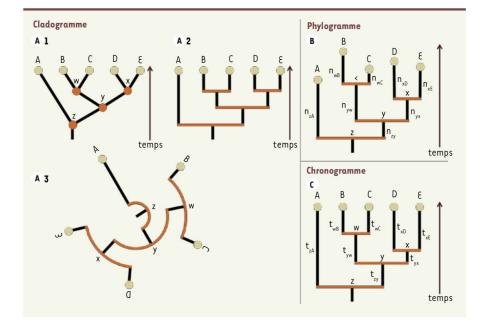

- Le positionnement de l'espèce humaine sur un arbre évolutif a fait l'objet de fluctuations depuis 1900.
- Les représentations arborées étaient fortement influencées par la perception subjective de la place de l'humain par rapport aux autres primates.
- Durant les années 1920, la branche humaine était considérée comme complètement séparée des autres hominiens.
- Depuis les années 1960, on retrouve un rapprochement de la branche humaine avec le chimpanzé et le gorille.
- Depuis les années 1970, la disponibilité de séquences d'ADN a confirmé la pertinence de ce rapprochement.

FIGURE 3.1 Shifting patterns: Between the beginning of the twentieth century and today, ideas about the relationships among apes and humans have moved full circle.

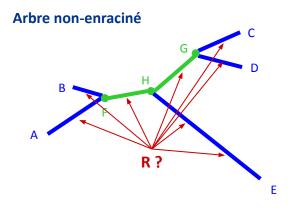
Unités taxonomiques opérationnelles (OTU) et hypothétiques (HTU)

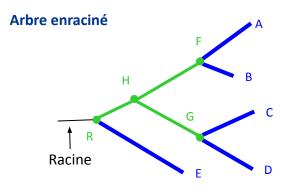

- Les relations évolutives entre les objets étudiés (espèces, organes, séquences) sont représentées par des arbres phylogénétiques
- Les arbres sont des graphes composés de noeuds et de branches
 - Noeuds = unités taxonomiques
 - Feuilles ou **OTU** = **Unités Taxonomiques Opérationnelles** (A, B, C, D, E), pour lesquelles on dispose de données. Note : les OTU peuvent correspondre à des organismes existants ou éteints (données paléontologiques ou paléogénomiques).
 - Noeuds internes ou HTU = Unités taxonomiques
 Hypothétiques (F, G, H, I), pour lesquelles on ne dispose pas de données, et qui correspondent aux espèces ancestrales communes à plusieurs OTU.
 - Branches = relations de parenté(ancêtre/descendants) entre unités taxinomiques
 - Branches internes
 - Branches externes
- On appelle topologie l'ensemble des branchements de l'arbre.

Source: Emese Meglézc 10

Représentations arborescentes des histoires évolutives

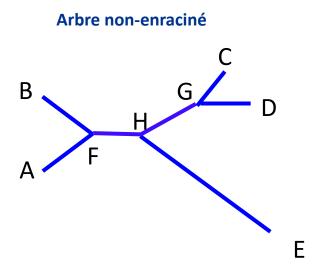
- On représente les histoires évolutives sous forme d'arbres
- Différents types de représentation peuvent être utilisés selon les cas.
 - Bifurcations triangulaires ou rectangulaires
 - Disposition radiale
- Selon les cas, les longueurs des branches représentent
 - le nombre d'événements de divergences (cladogramme),
 - le nombre de différences génétiques ou morphologiques entre deux espèces (phylogramme),
 - le temps de divergence (chronogramme).

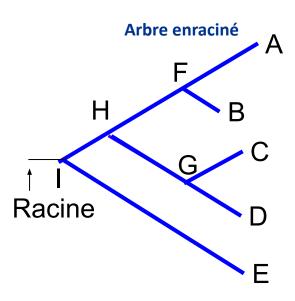



Arbres enracinés ou non enracinés

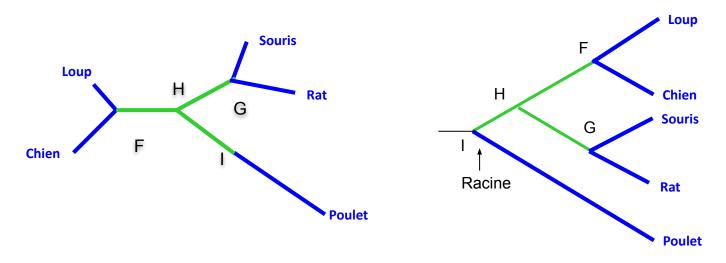
- Selon les méthodes utilisées, l'inférence phylogénétique produit soit un arbre enraciné, soit un arbre non-enraciné.
- Les arbres non-enracinés ne sont pas réellement des arbres phylogénétiques car ils n'ont pas de direction temporelle → indiquent les distances, mais pas les relations de parenté entre les noeuds.
- La racine définit un une orientation de l'arbre, et donc un chemin évolutif unique vers chaque feuille. Elle symbolise le dernier ancêtre commun (i.e. le plus récent) de toutes les OTU.
- A priori, elle peut se situer sur à n'importe quelle position sur n'importe quelle branche de l'arbre.

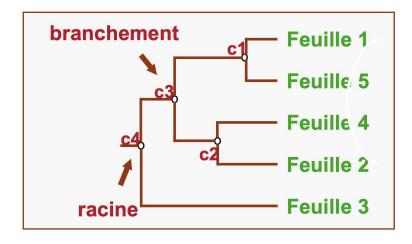
Comment enraciner un arbre?

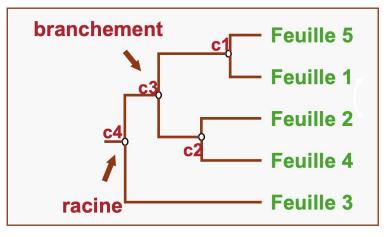

- Dans certains cas, on peut s'appuyer sur une connaissance a priori de la feuille la plus externe parmi les OTU étudiées, qualifiée de groupe extérieur (outgroup en anglais)
 - Exemple : si un arbre contient chien, loup, souris, rat et poulet
 → sur base des connaissances biologiques, on décide que le groupe extérieur est le poulet
- En absence de connaissance a priori du OTU les plus externes parmi les OTU étudiées, on peut envisager un enracinement au poids moyen: on enracine l'arbre sur la branche qui minimise la moyenne des distances aux feuilles.
 - Note: ceci implique une hypothèse d'horloge moléculaire: on considère que le taux de mutation est constant au cours de l' évolution, et égal entre les branches. Cette hypothèse n'est généralement pas très réaliste, il s'agit d'une approximation.



Arbres enracinés ou non enracinés

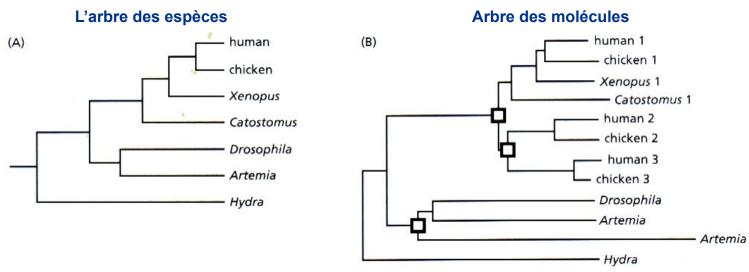

- Les arbres non-enracinés ne sont pas réellement des arbres phylogénétiques car ils n'ont pas de direction temporelle → indiquent les distances, mais pas les relations de parenté entre les noeuds.
- La racine définit un une orientation de l'arbre, et donc un chemin évolutif unique vers chaque feuille.
- Elle symbolise le dernier ancêtre commun (i.e. le plus récent) de toutes les OTU.


Comment enraciner un arbre phylogénétique?


- Dans certains cas, on peut s'appuyer sur une connaissance *a priori* de la feuille la plus externe parmi les OTU étudiées, qualifiée de **groupe extérieur** (*outgroup* en anglais)
 - Exemple : si un arbre contient chien, loup, souris, rat et poulet → sur base des connaissances biologiques, on décide que le groupe extérieur est le poulet
- En absence de connaissance *a priori* du OTU les plus externes parmi les OTU étudiées, on peut envisager un **enracinement au poids moyen** : on enracine l'arbre sur la branche qui minimise la moyenne des distances aux feuilles.
 - **Note:** ceci implique une hypothèse d'**horloge moléculaire**: on considère que le taux de mutation est constant au cours de l'évolution, et égal entre les branches. Cette hypothèse n'est généralement pas très réaliste, il s'agit d'une approximation.

Adapté d'après Emese Meglézc

Construction progressive d'un arbre phylogénétique (méthode UGMA)

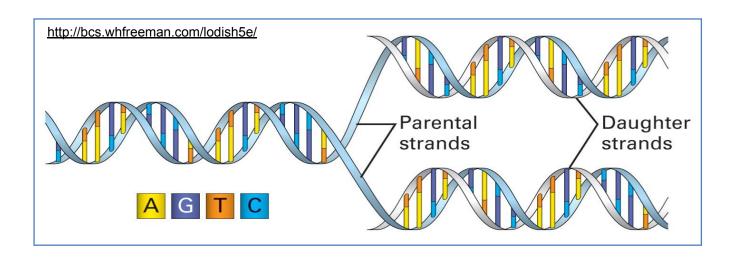


- Dans un arbre, les deux enfants de chaque branche peuvent être interchangés.
- Le résultat est un arbre isomorphique, considéré équivalent à l'arbre initial.
- Les deux arbres de gauche sont équivalents.
- Cependant
 - Arbre du dessus: les feuilles 1 et 2 sont très éloignées.
 - Arbre du dessous: les feuilles 1 et 2 sont voisines.
- Les distances verticales entre deux nœuds ne reflètent pas leur distance réelle!
- La distance entre deux nœuds est la somme des longueurs des branches qui les séparent.

Arbre des espèces et arbre des molécules

- En partant d'une famille de séquences macromoléculaires (ADN, ARN, protéines), on peut construire des arbres phylogénétiques.
- En comparant l'arbre des molécules et l'arbre des espèces, on peut inférer l'histoire évolutive de cette famille de séquences.
- Nous reviendrons plus tard sur cet exemple, en expliquant les méthodes bioinformatiques permettant d'inférer des arbres moléculaires à partir de séquences, et les façons d'interpréter ces arbres en tenant compte de la filiation des espèces.

Evolution des séquences


Similarité de séquences, homologie et analogie

Au même titre que pour les caractères physiques, les ressemblances entre deux séquences macromoléculaires peuvent résulter de différentes causes.

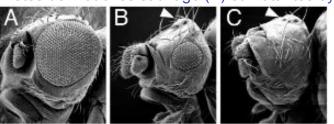
- Homologie: les ressemblances entre les séquences s'expliquent par une origine ancestrale commune, leurs différences proviennent de l'accumulation de mutations. Il s'agit d'une évolution divergente (les séquences deviennent de plus en plus différentes avec le temps).
- Analogie: les ressemblances résultent de trajectoires indépendantes. Il s'agit d'une évolution convergente (les séquences se ressemblent de plus en plus avec le temps), qui peut éventuellement manifester l'effet d'une même pression évolutive.

Réplication de l'ADN

- Une implication directe de l'appariement est que chaque brin contient l'information complète
- Durant la réplication, les brins se séparent et chaque brin sert de modèle pour la synthèse d'un brin complémentaire.
- La réplication assure donc le transfert de l'information génétique d'une cellule à ses descendantes.

Effets phénotypiques des mutations

Drosophile de « type sauvage »

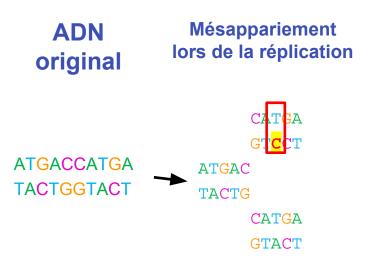

https://commons.wikimedia.org/wiki/File:Standing_female_ Drosophila_melanogaster.ipg

Mutant curly

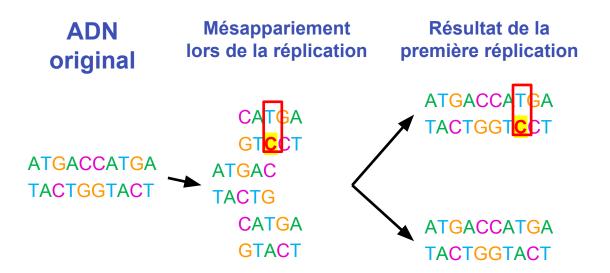
http://flybase.org/reports/FBal0002196.html

Têtes de mouches sauvage (A) et mutantes eyeless (B, C)

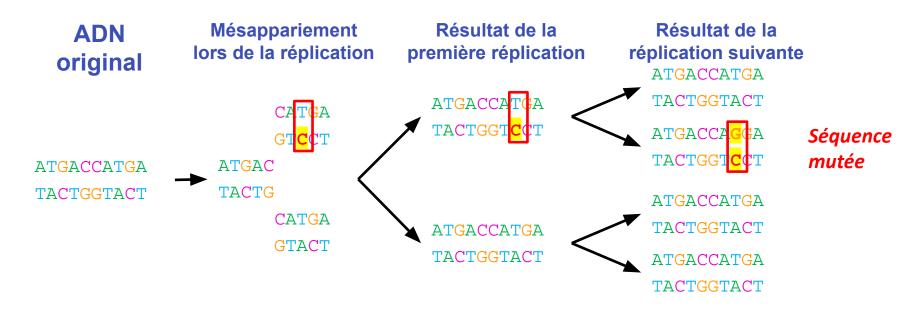
http://www.scq.ubc.ca/quarterly012/white drosophila.gif


Double mutant curly + white

https://arrogantscientist.wordpress.com/2009/01/12/balancer-chromosomes/


Substitution

- Substitution
 - Remplacement d'un résidu (une lettre) par un autre
- Origine:
 - Lors d'une réplication, la polymérase de l'ADN incorpore un nucléotide incorrect sur un des brins (mésappariement).

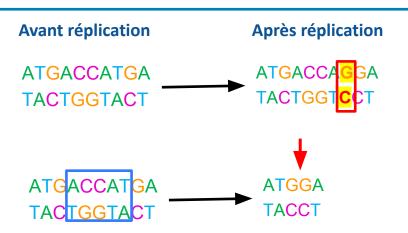

Substitution

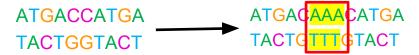
- Substitution
 - Remplacement d'un résidu (une lettre) par un autre
- Origine:
 - Lors d'une réplication, la polymérase de l'ADN incorpore un nucléotide incorrect sur un des brins (mésappariement).

Substitution

- Substitution
 - Remplacement d'un résidu (une lettre) par un autre
- Origine:
 - Lors d'une réplication, la polymérase de l'ADN incorpore un nucléotide incorrect sur un des brins (mésappariement).

Typologie des mutations


Substitution: remplacement d'un résidu (une lettre) par un autre


Délétion : suppression d'un

fragment d'ADN

Insertion: ajout d'un fragment

ďADN

Concepts: homologie, analogie, paralogie, orthologie

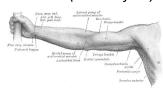
Homologie et analogie

La similarité entre deux traits (organes, séquences) peut s'interpréter par deux hypothèses alternatives: homologie et analogie.

Homologie

- La similarité s'explique par le fait que les deux caractères résultent d'une origine ancestrale commune.
- Les différences entre les deux caractères homologues résultent de l'accumulation de mutations à partir de l'ancêtre commun. Il s'agit donc d'une évolution par *divergence évolutive*.

Analogie


- Ressemblance entre deux traits (organes, séquence) qui ne résulte pas d'une origine ancestrale commune.
- Les traits similaires sont apparus de façon indépendante. Leur ressemblance peut éventuellement manifester l'effet d'une pression évolutive qui a sélectionné les mêmes propriétés.
- Dans ce cas, on parle de convergence évolutive.

Exercice : identifiez les relations d'homologie et d'analogie entre membres antérieurs des animaux représentés ci-dessous

Taupe (mammifère)

Humain (mammifère)

Poule (oiseau)

Pigeon (oiseau)

Taupe-grillon (insecte)

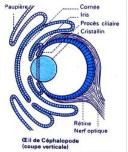
Chimpanzé (mammifère)

Mouche (insecte)

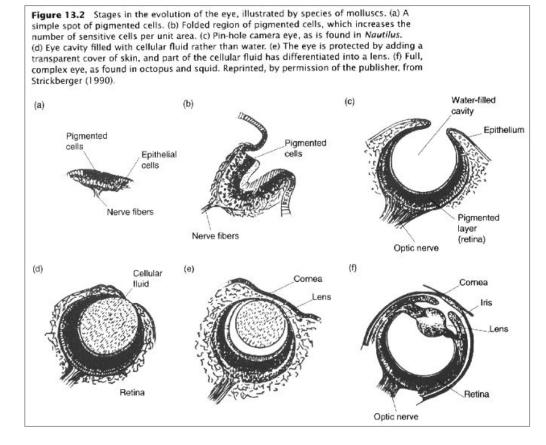
Chauve-souris (mammifère)

Structures analogues

- La vision des différents groupes d'animaux repose sur des yeux de structures très diverses.
- L'oeil à facettes des insectes est très différent de l'oeil des vertébrés
- L'oeil de pieuvre présente de fortes similarités de structures avec l'oeil humain, mais quelques différences notoires
 - **Similarités:** oeil sphérique, cornée, iris, cristallin, ...
 - Différences: orientation des cellules rétiniennes: les axones partent vers l'intérieur chez les vertébrés, vers l'extérieur chez les céphalopodes
- En dépit de leur ressemblance anatomique, l'oeil de pieuvre et l'oeil humain résultent de voies évolutives indépendantes. Leur ressemblance est due à une convergence évolutive plutôt qu'à une origine commune. Il s'agit d'un cas spectaculaire de ressemblance par analogie.


Oeil de drosophile (insecte)

Oeil de pieuvre (mollusque céphalopode)


Oeil humain (mammifère)

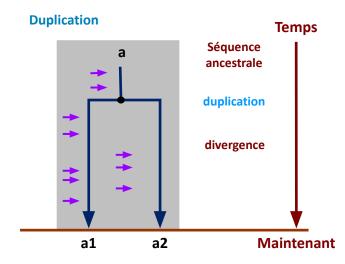
Figures:

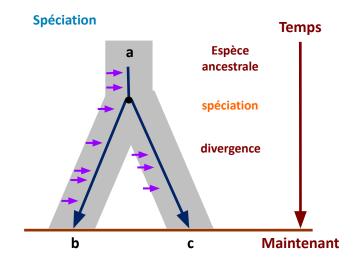
Chez différentes espèces de mollusques, on observe une grande diversité dans la structure de l'oeil, allant de formes très rudimentaires (quelques cellules photosensibles sur l'épiderme) à un oeil aussi complexe que celui des vertébrés, dans le cas de la pieuvre.

Evénements évolutifs générant des séquences homologues

 Pour l'analyse de la phylogénie moléculaire, nous porterons un intérêt tout particulier à deux événements évolutifs susceptibles de générer des séquences homologues: duplication et spéciation.

Duplication


- Une duplication est une mutation qui génère un dédoublement d'une partie de l'ADN génomique. La duplication peut recouvrir l'ensemble du génome (formation d'organismes polyploïdes), un chromosome entier, ou un fragment de chromosome de taille plus ou moins grande.
- Les duplications peuvent éventuellement entraîner l'apparition de copies multiples d'un ou plusieurs gènes, provoquant ainsi une certaine redondance de l'information génétique.
- Dans certains cas, l'une des copies dupliquées du gène acquiert, par accumulation de mutations, de nouvelles caractéristiques qui lui permettent d'assumer une nouvelle fonction. Ce mécanisme, appelé duplication-divergence, est en grande partie à l'origine de la diversification des fonctions biologiques.


Spéciation

- Processus évolutif qui résulte en la formation d'espèces distinctes à partir d'une espèce unique.
- Les événements de duplication et spéciation suscitent l'apparition de copies multiples à partir d'une seule séquence, soit au sein d'une même espèce (duplication), soit au sein des espèces distinctes dérivées de la spéciation. Ces séquences, dont la similarité résulte d'une séquence ancestrale commune, sont dites *homologues*

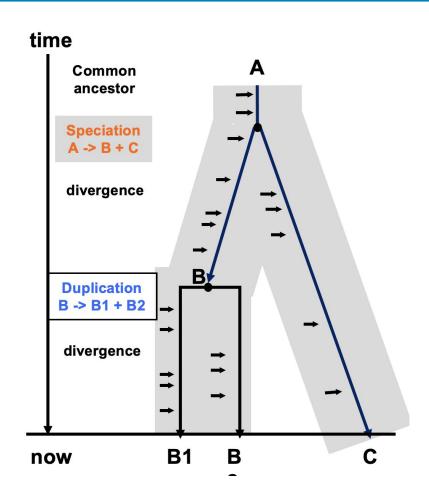
Scénarios évolutifs

- Nous disposons de deux séquences, et nous supposons qu'elles divergent d'un ancêtre commun.
- La divergence peut résulter
 - d'une duplication (création de deux copies du gène dans le même génome)
 - ou d'une *spéciation* (formation d'espèces séparées à partir d'une espèce unique).
- Les flèches violettes indiquent les mutations (substitutions, délétions, insertions) qui s'accumulent au sein d'une séquence particulière au cours de son histoire évolutive. Ces mutations sont à l'origine de la diversification des séquences, des structures et des fonctions.

Inférence d'homologie

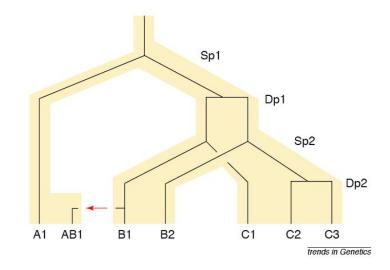
- Avant d'affirmer que deux séquences sont homologues, nous devrions pouvoir retracer leur histoire jusqu'à leur ancêtre commun.
- Nous ne pouvons malheureusement pas disposer des séquences de toutes les espèces disparues.
 Il est donc impossible de démontrer formellement l'homologie.
- Cependant, nous pouvons appuyer l'hypothèse d'homologie sur une analyse de la vraisemblance d'un scénario évolutif (taux de mutations, niveaux de similarités).
 - Si des séquences très longues ont des taux très forts de similarité, on considérera qu'elles descendent vraisemblablement d'un ancêtre commun.
 - Pour des séquences courtes, une forte ressemblance, voire une identité parfaite, peuvent éventuellement provenir
- L'inférence d'homologie est toujours attachée à un certain *risque de faux positifs*. Les modèles évolutifs nous permettent d'estimer ce risque.

Inférence d'homologie



L'homologie est une relation logique (soit vraie, soit fausse).

- Deux séquences sont homologues (possèdent des caractères communs parce qu'elles dérivent d'un ancêtre commun) ou elles ne le sont pas.
- Il est donc complètement inapproprié de parler de « niveau d'homologie » ou « pourcentage d'homologie ».
- La formulation correcte
 - On observe un certain niveau de similarité entre deux séquences (pourcentages de résidus identiques, pourcentages de résidus « similaires »).
 - Sur cette base, on évalue deux scénarios évolutifs: cette similarité peut provenir d'une évolution convergente (analogie) ou divergente à partir d'un ancêtre commun (homologie).
 - Si la deuxième hypothèse est la plus vraisemblable, on *infère* que les séquences sont homologues.


Orthologie versus paralogie

- Zvelebil & Baum (2000) fournissent une définition claire et opérationnelle des concepts d'orthologie et paralogie.
 - Orthologues: séquences dont le dernier ancêtre commun précède immédiatement un événement de spéciation.
 - Paralogues séquences dont le dernier ancêtre commun précède immédiatement un événement de duplication
- Exemples:
 - B et C sont *orthologues*, car leur dernier ancêtre commun (A) précède un événement de *spéciation* (A → B + C).
 - B1 et B2 sont *paralogues* car le premier événement évolutif qui succède à leur dernier ancêtre commun (B) est une *duplication* (B → B1 + B2).

Représentation détaillée des événements de spéciation / duplication

- La figure de droite combine deux niveaux de représentation
 - Les lignes noires fines représentent les relations évolutives entre molécules (arbre des molécules).
 - Les ombrages épais représentent l'arbre des espèces.
- Les spéciations (Sp) sont représentées par des branchements triangulaires sur l'arbre des espèces
 - En cas de spéciation, la molécule ancestrale se retrouve dans chacune des espèces dérivées.
- Les duplications (Dp) sont représentées par des branchements rectangulaires.
 - En cas de duplication, on retrouve au sein de la même espèce deux copies de la séquence ancestrale.

The idealized evolution of a gene (lines) is shown from a common ancestor in an ancestral population (the gray background), descending to three populations labelled A, B and C. There are two speciation events (Sp1 and Sp2), each occurring at the junctions shown as an upside down Y. There are also two gene-duplication events (Dp1 and Dp2), depicted by a horizontal bar. Two genes whose common ancestor resides at a Y junction (speciation) are orthologous. Two genes whose common ancestor resides at a horizontal bar junction (gene duplications) are paralogous. Thus, C2 and C3 are paralogous to each other but are orthologous to B2. Both are paralogous to B1 but orthologous to A1. The red arrow denotes the transfer of the B1 gene from species B to species A. As a result, the AB1 gene is xenologous to all six other genes. All three subtype relationships are reflexive, that is, A1=>B1 implies B1=>A1 where => should be read, for example, as 'is orthologous to.' However, the relationships are not transitive. Thus, C2=>A1=>C3 might be true, but it is not necessarily therefore true that C2=>C3, as indeed it is not in the figure if => is read as 'is orthologous to.' A different non-transitivity occurs for 'is paralogous to' with B2=>C1=>C2.

Définitions des concepts d'après Fitch (2000)

L'article de Fitch (2000) définit les concepts suivants.

Homologie

- Owen (1843). « le même organe sous toutes ses variétés de forme et de fonction ».
- Fitch (2000). L'homologie est la relation entre toute paire de caractères qui descendent, généralement avec divergence, d'un caractère ancestral commun.
- Note: "caractère" peut se référer à un trait phénotypique, un un site d'une séquence, à un gène entier, ...
- Application moléculaire: deux gènes sont homologues s'ils divergent d'un gène ancestral commun.
- Analogie: relation entre deux caractères qui se sont développés de façon convergente à partir d'ancêtres non-apparentés.
- **Cénancêtre:** l'ancêtre commun le plus récent pour les groupes taxonomiques considérés.
- Orthologie: relation entre deux caractères homologues dont l'ancêtre commun se trouve chez le cénancêtre des taxa à partir desquels les séquences ont été obtenues.
- Paralogie: relation entre deux caractères émanant d'une duplication de gène pour ce caractère.
- Xénologie: relation entre deux caractères dont l'histoire, depuis leur dernier ancêtre commun, inclut un transfert entre espèces (horizontal) du matériel génétique pour au moins l'un de ces caractères.

Sp1

Dp1

Sp2

Dp2

A1 AB1 B1 B2 C1 C2 C3

itends in Genetics

The idealized evolution of a gene (lines) is shown from a common ancestor in an ancestral population (the gray background), descending to three populations labelled A, B and C. There are two speciation events (Sp1 and Sp2), each occurring at the junctions shown as an upside down Y. There are also two gene-duplication events (Op1 and Dp2), depicted by a horizontal bar. Two genes whose common ancestor resides at a Y junction (speciation) are orthologous. Two genes whose common ancestor resides at a horizontal bar junction (gene duplications) are paralogous. Thus, C2 and C3 are paralogous to each other but are orthologous to B2. Both are paralogous to B1 but orthologous to A1. The red arrow denotes the transfer of the B1 gene from species B to species A. As a result, the AB1 gene is xenologous to all six other genes. All three subtype relationships are reflexive, that is, A1 => B1 implies B1 => A1 where => should be read, for example, as 'is orthologous to.' However, the relationships are not transitive. Thus, C2 = > A1 = > C3 might be true, but it is not necessarily therefore true that C2 = > C3, as indeed it is not in the figure if => is read as 'is orthologous to.' A different non-transitivity occurs for 'is paralogous to' with B2 = > C1 = > C2.

Analogie Homologie

Paralogie

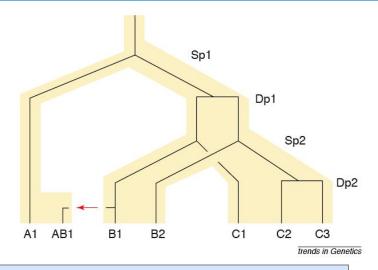
Xénologie ou non

(xénologues issus de paralogues)

Orthologie

Xénologie ou non (xénologues issus d'orthologues)

Figure: Zvelebil, M. J. & Baum, J. O. Understanding bioinformatics. (Garland Science, 2008). Fitch, W. M. Homology a personal view on some of the problems. Trends Genet 16, 227–231 (2000). doi.org/10.1016/s0168-9525(00)02005-9


Exercice: types d'homologie

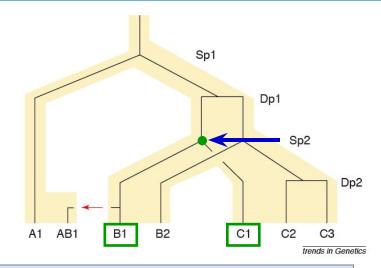
Sur base des définitions de **Zvelebil & Baum** (ci-dessous), qualifiez la relation entre chaque paire de gènes dans le schéma de Fitch (ci-contre).

P paralogieO orthologieX xenologie

A analogie

	A1	AB1	B1	B2	C1	C2	С3
A1							
AB1							
B1							
B2							
C1							
C2							
C3							

- Paire d'orthologues: paire de gènes dont le dernier ancêtre commun précède immédiatement un événement de spéciation (ex: a₁ and a₂).
- Paire de paralogues: paire de gènes dont le dernier ancêtre commun précède immédiatement une duplication génique (ex: b₂ and b₂).


Source: Zvelebil & Baum, 2000

Exercice: types d'homologie

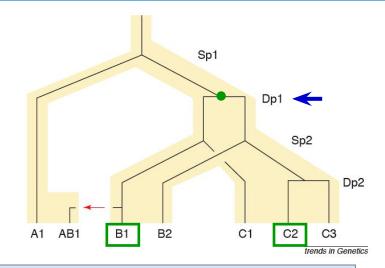
Exemple: B1 versus C1

- Les deux séquences (B1 and C1) proviennent respectivement des taxa B and C.
- Le cénancêtre (flèche bleue) est le taxon qui précède le second événement de spéciation (Sp2).
- Le gène ancestral commun (point vert) coïncide avec le cénancêtre.
- → B1 et C1 sont orthologues

	A1	AB1	В1	В2	C1	C2	C3
A1							
AB1							
B1							
В2							
C1			0				
C2							
СЗ							

- Paire d'orthologues: paire de gènes dont le dernier ancêtre commun précède immédiatement un événement de spéciation (ex: a₁ and a₂).
- Paire de paralogues: paire de gènes dont le dernier ancêtre commun précède immédiatement une duplication génique (ex: b₂ and b₂).

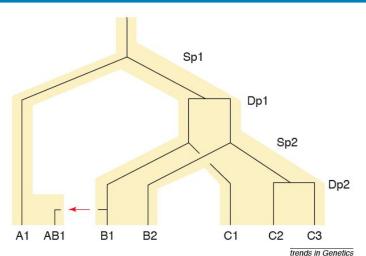
Source: Zvelebil & Baum, 2000

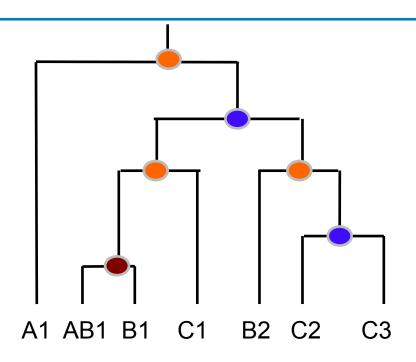

Exercice: types d'homologie

Exemple: B1 versus C2

- Les deux séquences (B1 and C2) proviennent respectivement des taxa B and C.
- Le dernier gène ancestral commun (point vert) est celui qui précède immédiatement la duplication Dp1.
- Cet ancêtre commun est bien antérieur à la spéciation qui a séparé les espèces B et C (flèche bleue).

→ B1 et C2 sont paralogues


	A1	AB1	B1	B2	C1	C2	С3
A1							
AB1							
B1							
B2							
C1 C2			0				
C2			Р				
С3							


- Paire d'orthologues: paire de gènes dont le dernier ancêtre commun précède immédiatement un événement de spéciation (ex: a₁ and a₂).
- Paire de paralogues: paire de gènes dont le dernier ancêtre commun précède immédiatement une duplication génique (ex: b₂ and b₂).

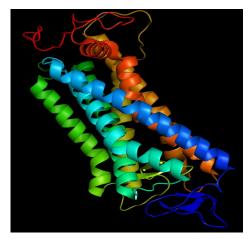
Source: Zvelebil & Baum, 2000

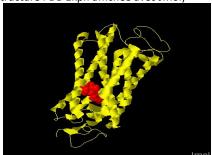
Solution de l'exercice

						acido in deneu	00
	A1	AB1	B1	B2	C1	C2	С3
A1		Х	0	0	0	0	0
AB1	Χ		Χ	Χ	Χ	Χ	Χ
B1	0	Χ		Р	0	Р	Р
B2	0	Χ	Р		Р	0	0
C1	0	Χ	0	Р		Р	Р
C2	0	Χ	Р	0	Р		Р
С3	0	Х	Р	0	Р	Р	

A, B, C représentent les espèces 2, 3, 3 les copies des gènes

- Spéciation
- Duplication
- Transfert horizontal

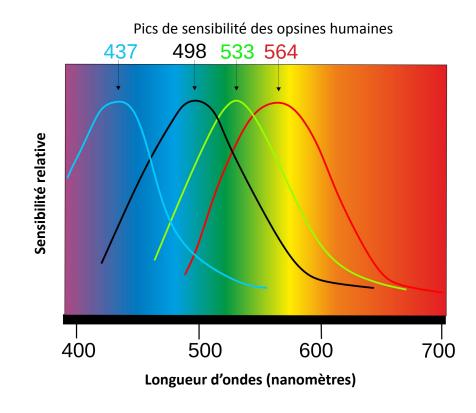

Alignement multiple


Structure d'une opsine

Modèle tridimensionnel du pigment des cônes bleus.

(Structure PDB 1kpn affichée avec MacPyMol)

(Structure PDB 1kpn affichée avec JMol)



- La perception de la lumière repose sur l'action de protéines appelées opsines.
- Les opsines se lient à une petite molécule, le rétinol, et forment ainsi la rhodopsine.
- La rhodopsine est un pigment qui a la capacité de capter certaines longueurs d'ondes de lumière.
- La séquence de l'opsine détermine le spectre de sensibilité de la rhodopsine.
- Des mutations peuvent donc modifier la longueur d'onde optimale d'une opsine.

41

Le spectre visible

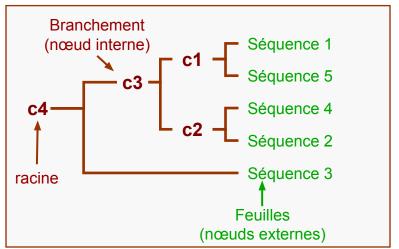
- Chaque cellule photoréceptrice perçoit une gamme spécifique de longueur d'ondes, avec un pic précis.
 - 420 nanomètres (nm) pour les cônes sensibles au bleu (short-wave sensitive: SWS)
 - 489 nm pour les bâtonnets
 - 534 nm pour les cônes sensibles au vert (medium-wave sensitive: MWS)
 - 564 nm pour les cônes sensibles au rouge (long-wave sensitive: LWS)
- Les cônes (cellules rétiniennes sensibles aux couleurs) expriment chacun une opsine différente. Le nombre d'opsines sensibles aux couleurs varie selon les espèces
 - 3 opsines -> vision trichromatique (primates de l'ancien monde)
 - 2 opsines -> vision **dichromatique** (la plupart des autres mammifères)
 - Noter le fort recouvrement entre les spectres de sensibilité des opsines verte et rouge, et la faible différence entre leurs pics (31 nm) par rapport à la différence entre opsines bleue et verte (96 nm).

Matrice de pourcentages d'identité (opsines de mammifère, export de clustalx)

Opsines sensible au rouge et au vert

Opsines sensible au bleu

		_		_									_																				_											_
Mammalian opsins - percent identify matrix			by clu 3		5	6	7	8 9	10	11	12	13	14	15	16	17	18	19	20	21 2	22 2	23 2	4 2	5 26	27	28	29	30	31	32	33	34 3	5 3	36 37	7 3	8 39	40	41	42	43	44	45	46 4	7 4
																																			riensis									
				ST																						sn									arie						ata		4	1
				ndicus				uns			Sens					Ins	10					Si	-	ŝ		Ornithorhynchus_anatinus	tus								asc						audata		Inylamys_elegans Ornithorhynchus_anatinus	1
				æ				in:	as	ns	٥	.s		sn		Oryctolagus_cuniculus	isi			S	larsipes_rostratus	=	Myrmocohine facriatus	s se		an	fachyglossus_aculeatus		S						dae	s	:=	ZI S	S	SI	Sice		S Le	- Inlead
		ST	е	. oe	IIS			Virginal Principal Princip	e,	cat	ā	μď	ns	-gi-	Ins	ð,	line	us	s ·	중 :	3		45	- 를	亞	yn.	, 32		gicn	-	æ			tes	E	insi	gen	ΙŽ	큺	ratn	cras	ita	gan	2
	s	all.	틐	Pagophilus_groen	Canis_tamiliaris	s i	Sn:	s s	Globicephala_melas	Ę	Phocoenoides_pho	.W_Delphinus_delphis	SC	Rattus_norvegicu	_cavia_porcellus	Sus.	aro	_Homo_sapiens	sapiens	ج	larsipes_rostratus	Macronis eligenii		Isoodon_obesulus	Didelphis_aurita	ync	sn'		Š	Myotis_lanige	Myotis_ricketti	s		Pan_paniscus Pan troglodyt	Daubentonia mada	Saimiri_bolivensis	Macropus_eugenii	Setonix_brachyurus	Isoodon_obesulus	_Tarsipes_rostratus	Sminthopsis_crassi	Didelphis_aurita	_Inylamys_elegans Ornithorhynchus	Sha
	atr	폏.	£ :	₽.	E a	3	1	oile	d	s.	ou	nus	Ë	5	a,	olag	S	S,	sa.	Ě	5		1 3	2	is,	r.	los		일,	<u>e</u>	Ĕ,	Ξ.	. 1	anis ogle	, 2	۾	bns	ĝ	٦,	S	do	his.	y, t	Sol
	S	sn'	g .	do:	S .	Bos_taurus	Capra_hircus) og	bice	sion	900	id i	Sn_	ŧ	via.	χţ	Ë	Ĕ	W_Homo	₫.	e s	can		9	eb	ŧ	hyg	mouse	tas	otis	otis	Bos_taurus		4 5	- adr	i.	cro	Ö	용	sipe	ŧ	elp .	ith di	2
	Fe	E	Pho .	Pag (E d	909	g 2	Ö	8	Ē	Pho	Del	Ē		- I	ŏ	S,	半	윤	್ಷ ,	E 3	j 2	1 3	So	Pid	Ora	Tac	٤.	Rat	Š.	Σ.	, Bo		Par Pa	Dat	Sail	Σ.	Set	So.	Tar	S.	<u>B</u> 1	Ē 6	Ē
	LW_Felis_catus	LW_Equus_caballus	LW_Phoca_vitulina	≥ :	> 3	≥ 3	LW_Capra_hircu MW_Siis_scrofa	MW_Odocoileus_virginianus	≥,	.W_Tursiops_truncatus	≥	≥	MW_Mus_musculus	₹	₹	⋛	MW_Sciurus_carolinensis	⋛	≥	WW_Callithrix_jacchus	3	, }	3	, ≥	≥	>	≥	≥,	SW_Rattus_norvegicus	```	NS.	N 8	į ;	sw_ran_paniscus SW Pan troglody	3	≥ .	≥,	≥	>	≥	≥ ′	<u>></u>	ş' ş	3
1 LW Felis catus		97	92	92 9	95 9	93 9	93 9	3 95	90	90	89	90	88	89	87	91	90	90	91	91 8	33 8	34 8	4 8	6 85	84	86	85	41	42	42		42 4		12 42	•	1 42	42	43	43	42	44		42 4	1 4
2 LW_Equus_caballus	97 :	100	95 !	95 9	96 9	96 9	96 9	6 96	92	93	92	92	91	92	90	93	91	93	91	92 8	35 8	36 8	7 8	9 88	86	89	88	41	42	43	44	42 4	3 4	13 43	3 4	2 43	43	44	43	44	45	42	43 4	2 4
3 LW_Phoca_vitulina	92	95	100 !	99 9	94 9	92 9	92 9	1 92	88	88	88	88	89	90	88	90	91	90	91	90 8	32 8	32 8	2 8	4 83	83	83	83	41	42	43	42	42 4	2 4	12 42	2 4:	2 43	43	43	43	43	43	42	43 4	2 4
4 LW_Pagophilus_groenlandicus	92	95	99 10	00 9	93 9	92 9	92 9	1 92	88	88	88	88	89	90	88	89	91	90	91	89 8	31 8	31 8	2 8	3 83	82	82	82	40	41	42	42	42 4	1 4	11 43	1 4	1 42	42	43	43	43	43	41	42 4	1 4
5 LW_Canis_familiaris		96	94 !	93 10	00 9	95 9	95 9	4 95	90	90	89	90	89	90	90	93	92	90	89	90 8	33 8	33 8	3 8	5 84	83	84	84	41	43	43	43	42 4		12 42	2 4:	2 42	42	43	43	43	44	42	43 4	1 4
6 LW_Bos_taurus		96	92 !	92 9	95 10	00 9	99 9	7 97	93	94	93	93	88	89	87	90	90	89	89	91 8	31 8	32 8	1 8	3 83	82	83	82	41	43	42	43	42 4		12 42	2 4:	2 42	43	43	43	43	44	41	43 4	1 4
7 LW_Capra_hircus	93	96		92 9	95 9	99 10	00 9	7 97	93	94	93	93	88	89	87	90	90	89	89	90 8	31 8	32 8	1 8	3 83	82	82	82	41	42	42	43	42 4		12 42	2 4:	2 42	43	43	43	43	44	-	43 4	1 4
8 MW_Sus_scrofa	93	96	91 !	91 9	94 9	97 9	97 10	0 97	94	94	93	93	88	89	87	90	90	89	90	90 8	30 8	31 8	0 8	2 82	81	82	82	41	42	41	42	42 4		11 41	1 4:	2 42	42	43	43	43	44		42 4) 4
9 MW_Odocoileus_virginianus	95	96	92 !	92 9	95 9	97 9	97 9	7 100	93	93	93	93	89	89	89	91	89	91	89	92 8	34 8	35 8	5 8	7 86	85	86	85	41	42	42		42 4		12 42	2 4:	2 42		43	42	43	45		42 4	
10 LW_Globicephala_melas		92	88	88 9	90 9	93 9	93 9	4 93	100	99	98	99	86	87	86	88	88	88	88	89 8	30 8	80 8	0 8	1 81	81	81	80	41	-	1.7	-	42 4	_	11 41	1 4	1 42		43	42	43	44		42 4	
11 LW_Tursiops_truncatus	30	93	88	88 9	90 9	94 9	94 9	4 93	99	100	99	99	86 85	8/	86	88	88	88	88	89	79 8	30 7	9 8	1 80	81	81	80	41	41	-10		42 4 41 4	-	11 41				43 42	43 42	43	44		42 4 42 4	
12 LW_Phocoenoides_phocoena			88	88 8	89 5	33 5	93 9	3 93	98	99	100	20		86	85	88	87	87	87	88	78 7	19 /	8 8	0 80	80	80	79	40	41	40			-	11 41			42			42	43			
13 LW_Delphinus_delphis 14 MW_Mus_musculus		92	00	00 5	90 6	23 5	9 9	0 00	99	23	98	9E 1	85	00	91	90	90	00	00	00	22 6	2 /	2 8	4 93	00	80	80	40	41	42	-	41 4 43 4	_	11 41 13 43		1 41	41	42	42	42	43		41 4 43 4	
15 MW_Rattus_norvegicus	89	91	00 1	07 6	ם כפ	00 0	00 0	0 00	00	07	00	02 1	DO 1	90	91	01	01	00	00	00 0	22 0	22 0	2 0	14 OJ	00	0.0	02	41	43	42		43 4	-	13 43		2 44	43	44	43	44	44		43 4 43 4	
16 MW_Cavia_porcellus	87	90	99	88 (20 0	27 9	27 8	7 80	86	86	85	85	01	92 1	00	91	01	90	87	90 6	27 8	33 8	3 8	N 83	83	83	83	41	43	42		43 4		12 42		2 43	43	44	43	44	45		43 4	
17 MW_Oryctolagus_cuniculus		93	90	89 6	93 0	90 9	90 9	0 91	88	88	88	88	90	91	91 1	00	92	88	88	87 5	32 C	33 O	0 8	2 81	80	81	81	41	42	42		42 4		12 42	2 4	1 42	43	43	43	43	44		+3 + 42 4	1 4
18 MW Sciurus carolinensis	90	91	91	91	92 9	90 9	90 9	0 89	88	88	87	87	90	91	91	92 1	00	90	91	90 1	30 8	81 8	0 8	2 82	82	82	82	41	43	42		42 4		12 42	2 4	2 42	43	43	43	44	45		43 4	1 4
19 MW_Homo_sapiens	90	93	90 !	90 9	90 8	39 8	89 8	9 91	88	88	87	87	88	90	89	88	90 1	.00	96	96 8	32 8	32 8	3 8	5 84	84	85	83	42	43	43	44	44 4		13 43	3 4	3 44	44	44	44	44	45		14 4	3 4
20 LW_Homo_sapiens	91	91	91 !	91 8	89 8	39 8	89 9	0 89	88	88	87	87	88	89	87	88	91	96 1	.00	96 8	32 8	32 8	2 8	4 83	83	85	83	41	42	41	42	42 4	2 4	12 42	2 4:	1 42	42	43	43	43	44	42	43 4	2 4
21 MW_Callithrix_jacchus	91	92	90	89 9	90 9	91 9	90 9	0 92	89	89	88	88	89	90	88	87	90	96	96 1	00 8	33 8	33 8	3 8	5 85	85	86	84	41	43	42	43	43 4	2 4	12 42	2 4	2 43	43	43	43	43	45	42	43 4	2 4
22 LW_Tarsipes_rostratus	83	85	82	81 8	B3 8	31 8	81 8	0 84	80	79	78	79	82	83	82	80	80	82	82	83 10	00 9	98 9	6 9	5 96	96	90	92	42	43	43	42	42 4	2 4	12 42	2 4:	2 43	43	44	43	43	43	42	14 4	2 4
23 LW_Cercartetus_concinnus		86	82	81 8	83 8	32 8	82 8	1 85	80	80	79	79	83	83	83	80	81	82	82	83 9	98 10	0 9	6 9	5 95	95	89	91	42	43	43	43	43 4	2 4	12 42	2 4:	2 43	43	44	43	44	43	43	44 4	2 4
24 MW_Macropus_eugenii		87	82	82 8	83 8	31 8	81 8	0 85	80	79	78	79	82	83	83	80	80	83	82	83 9	96 9	96 10	0 9	7 95	94	90	92	42	42	43	42	42 4	2 4	12 42	2 4:	2 43	43	44	43	44	43	42	44 4	2 4
25 LW_Myrmecobius_fasciatus	86	89	84	83 8	85 8	33 8	83 8	2 87	81	81	80	80	84	85	84	82	82	85		-	95 9	95 9	7 10	0 97	94	91	92	42		43	42	42 4	_	12 42	2 4	2 43	43	44	43	43	43		44 4	1 4
26 LW_Isoodon_obesulus	85	88	83	83 8	84 8	33 8	83 8	2 86	81	80	80	80	83	84	83	81	82	84		85 9	96 9	95 9	5 9	7 100	95	91	92	42	42	42	42	42 4		11 41	1 4	1 42	42	43	42	43	42		43 4) 4
27 LW_Didelphis_aurita		86	83	82 8	83 8	32 8	82 8	1 85	81	81	80	80	83	84	83	80	82	84		85 9	96 9	95 9	4 9	4 95	100	90	91	42	42	42		42 4	- ·	11 41	1 4:	2 42	43	43	43	44	43		43 4	
28 LW_Ornithorhynchus_anatinus		89		82 8		33 8	82 8	2 86		81	80	80	83	84	83	81		85			90 8	39 9					93	40				42 4		11 41	1 4	1 42		44	43	44	43		43 4	
29 LW_Tachyglossus_aculeatus		88		82 8		32 8	82 8 41 4			80	79		82	83 41	83	81 41	-	83	-			91 9					100	39				41 4 87 8		11 41 R6 86	1 4	1 41	42	43	43	43	42		42 4 87 5	
30 SW_mouse							41 4 42 4			41	40 41		-	-		0.50		42				12 4 13 4					39 40	100		92	90	07 0	7 6	27 0	7 6	85	86	85	8/	85	86		37 5 37 5	
31 SW_Rattus_norvegicus			7				42 4 42 4			41	41	-				42					13 4 13 4	13 4 13 4	_				40	96	91 1	91	91	87 8 92 9	0 0	00 00	8	86	86	85	01	86	85	-	37 5 91 5	
32 SW_Myotis_laniger 33 SW_Myotis_ricketti			43 4	42 4		42 4	42 4 12 1	2 44		40	40	41	42		43	42	42	43		42 4	12 4	12 4	2 4	2 42		42	42	92	91]	00 1	99	01 0	0	20 90	9.	1 00	00	00	91	91	90		90 4	
34 SW_Bos_taurus				42 4			43 4 42 4			42	41	41	43			42	42	44			12 4	13 4	2 4	2 42		42	41	87	87	92	91 10	00 8	6 5	36 86	5 8	7 86	86	86	86	86	86		36 4	
35 SW_human							42 4			41	41										12 4	12 4		2 41		41	41	86		90	89	86 10		00 100) 9	1 92	83	83	85	83	85		36 5	
36 SW Pan paniscus							42 4			41	41										12 4	12 4	2 4	2 41	41	41	41	86	87	90		86 10	0 10	00 100) 9	1 92	83	83	85	83	85		36 5	
37 SW_Pan_troglodytes							42 4			41	41										-	12 4	2 4		41	41	41	86		90		86 10	0 10	00 100	9:	1 92	83	83	85	83	85		36 5	
38 SW_Daubentonia_madagascariensis		42		41			42 4	2 42		41	41		43		42	41		43			12 4	12 4	2 4	2 41	42	41	41	88	88	93	91	87 9	1 9	91 91	1 100	88	85	85	86	86	86		37 5	
39 SW_Saimiri_bolivensis			43	42	42 4	42 4	42 4	2 42	42	42	42	41	44	44	43	42	42	44	42	43	13 4	13 4	3 4	3 42	42	42	41	85	86	87	88	86 9	2 9	92 92	2 8	3 100	84	83	84	84	84	82	84 5	
40 SW_Macropus_eugenii	42	43	43	42	42 4	43 4	43 4	2 42	42	42	42	41	43	43	43	42	43	44	42	43	13 4	13 4	3 4	3 42	43	43	42	86	86	89	88	86 8	3 8	33 83	3 8	5 84	100	99	95	94	93	91 9	94 5	1 5
41 SW_Setonix_brachyurus	43	44	43	43 4	43 4	43 4	43 4	3 43	43	43	42	42	44	44	43	42	43	44	43	43	14 4	14 4	4 4	4 43	43	44	43	85	85	88	88	86 8	3 8	33 83	3 8	5 83	99	100	95	95	93	90 9	94 5	0 5
42 SW_Isoodon_obesulus		43	43	43	43 4	43 4	43 4	3 42	42	43	42	42	43	43	43	43	43	44	43	43	13 4	13 4	3 4	3 42	43	43	43	87	88	91	89	86 8	5 8	35 85	5 8	6 84	95	95	100	95	94	91 9	95 5	5
43 SW_Tarsipes_rostratus							43 4			43	42					43			43	43	13 4	14 4	4 4	3 43		44	43	85	86	91	89	86 8	3 8	33 83	3 8	5 84	94	95	95	100	94		93 5	
44 SW_Sminthopsis_crassicaudata							44 4			44												13 4				43	42	86	85	90	88	86 8	5 8	35 85	5 8	5 84		93	94					1 5
45 SW_Didelphis_aurita		42			42 4																	13 4					41	85	85			83 8		32 82				90	91		90 1			9 4
46 SW_Thylamys_elegans	42	43	43	42	43 4	43 4	43 4	2 42	42	42	42	41	43	43	43	42	43	44	43	43	14 4	14 4	4 4	4 43	43	43	42	87	87	91	90	86 8	6 8	36 86	5 8	7 84	94	94	95	93	92	94 10	00 5	0 5

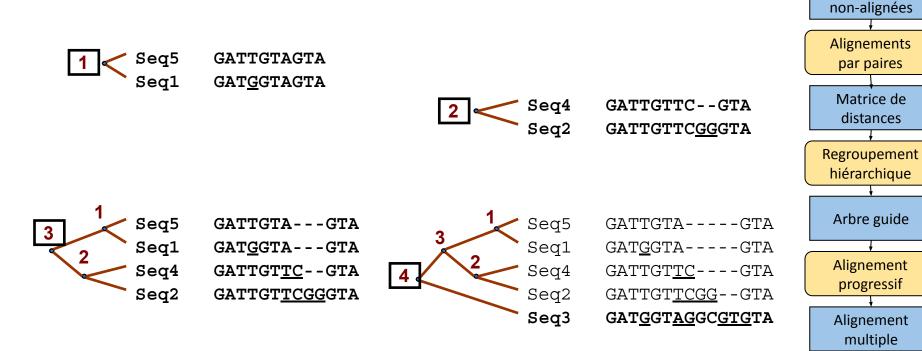

Groupe extérieur: 2 monotrèmes (ornithorynque et echidné)

Principe de la construction de l'arbre-guide – Méthode UPGMA

	•			
Matri	ICA (ገል ሰ	Rteir	nce
IVIGL		$u \cdot \iota$	a i J LU	1100

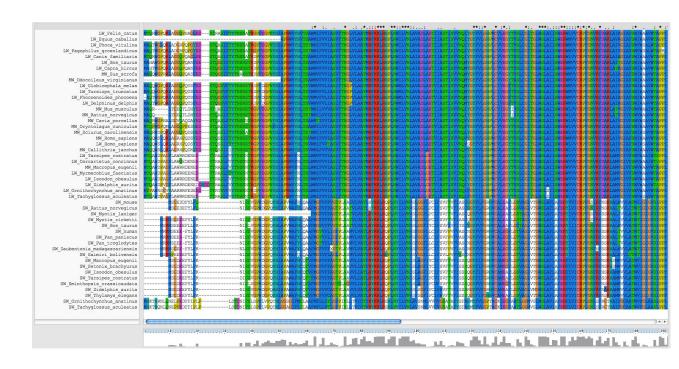
	séquence 1	séquence 2	séquence 3	séquence 4	séquence 5
séquence 1	0.00	4.00	6.00	3.50	1.00
séquence 2	4.00	0.00	6.00	2.00	4.50
séquence 3	6.00	6.00	0.00	5.50	6.50
séquence 4	3.50	2.00	5.50	0.00	4.00
séquence 5	1.00	4.50	6.50	4.00	0.00

Arbre


- Le clustering hiérarchique est une méthode agrégative, qui prend une matrice de distance en entrée et regroupe progressivement les objets en allant des plus proches aux plus distants.
- Algorithme UPGMA (unweighted pair group method with arithmetic mean)
 - Assigner chaque objet à un cluster séparé.
 - Identifier la paire de clusters les plus proches, et les regrouper en un seul.
 - Répéter la seconde étape jusqu'à ce qu'il ne reste qu'un seul cluster.
- **Résultat:** un arbre, dont les N nœuds intermédiaires correspondent à N clusters.
 - Longueurs des branches ~ distances entre clusters.

Règles d'agglomération

- Liaison simple (single linkage): distance entre groupes A et B = distance entre éléments les plus proches.
- Liaison moyenne (average linkage): distance moyenne entre tous les objets des deux groupes (=UPGMA).
- Liaison complète (complete linkage): distance entre les éléments les plus éloignés.


Alignement progressif – 3ème étape: alignement multiple

 On construit un alignement multiple en incorporant progressivement les séquences selon leur ordre de branchement dans l'arbre guide, en remontant des plus proches aux plus éloignées.

Exemple: la famille des opsines

- Pour inférer un arbre phylogénétique à partir d'une famille de séquences, on part toujours d'un alignement multiple.
- Figure : première partie d'un alignement multiple entre 50 opsines de mammifère.
- A l'œil nu, on distingue déjà
 2 groupes évidents.
- Dessus: opsines sensibles aux ondes moyennes (vert) ou longues (rouge)
- Dessous: opsines sensibles aux ondes courtes (bleu)

Lecture d'un alignement multiple

- Un alignement multiple consiste à aligner entre elles un ensemble de séquences simliaires, de façon à maximiser les correspondances entre résidus.
- Le résultat peut être affiché de façon graphique, avec
 - Une ligne par séquence
 - Une colonne par position de l'alignement multiple
- Les gaps (espacements, représentés par des "-") permettent d'ajuster les régions correspondantes à gauche et à droite.
- Contrairement aux alignements par paire, on peut généralement distinguer les délétions des insertions
 - Délétion: fragment de séquence absent d'une ou de quelques séquences mais présent ailleurs
 - Insertion: fragment de séquence présent dans une ou quelques séquences mais absent ailleurs
- La présence d'un groupe extérieur (ici Ornithorynchus et Tachyglossus) permet dans certains cas de lever des ambiguités.
- L'alignement multiple permet de distinguer des blocs conservés, soit sur l'ensemble de l'alignement, soit sur un sous-ensemble des séquences.

MW Cavia porcellus MW Oryctolagus cuniculus MW Sciurus carolinensis MW Homo sapiens LW Homo sapiens MW Callithrix jacchus LW Tarsipes rostratus LW Cercartetus concinnus MW Macropus eugenii LW Myrmecobius fasciatus Insertion ynchus anatinus LW_Tachyglossus_aculeatus SW Rattus norvegicus SW Myotis laniger SW Myotis ricketti SW human SW Pan paniscus an troglodytes SW Macropus eugeni: SW Setonix brachyurus SW Isoodon obesulus SW Tarsipes rostratus SW Didelphis aurita SW Ornithorhynchus anatinus Groupe extérieur (outgroup) 1 10 29 30 49 50 60 70 80 واللبا والمواهدين

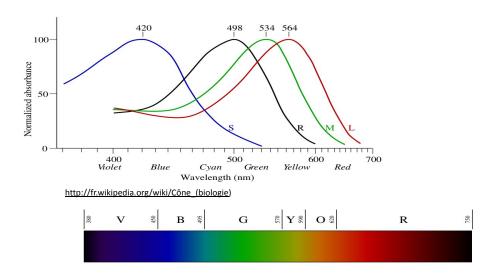
LW Equus caballus LW Phoca vitulina

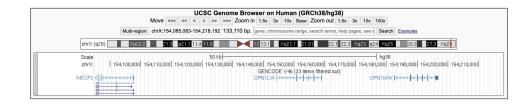
> LW Capra hircus MW Sus scrofa

LW Pagophilus groenlandicus LW Canis familiaris

MW Odocoileus virginianus LW Globicephala melas

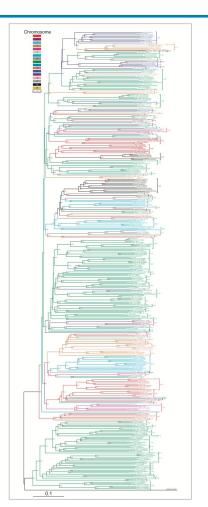
LW Tursiops truncatus LW Phocoenoides phocoena

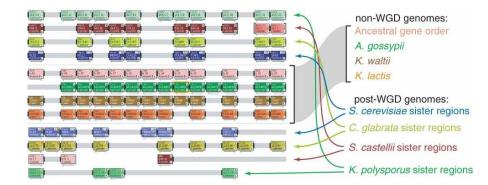

LW Delphinus delphis MW Mus musculus MW Rattus norvegicus **Délétion**

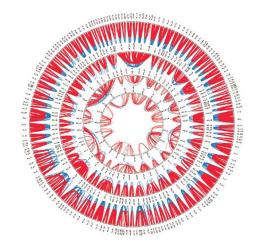

Les duplications à l'origine de l'innovation

La vision trichromatique chez les primates de l'ancien monde

- Les primates de l'ancien monde (Afrique + Asie + Europe),
 y compris l'humain, ont une vision trichromatique, basée sur 3 pigments
 - Bleu (short-waves opsin, SW)
 - Vert (medium-waves opsin, MW)
 - Rouge (long-waves opsin, LW)
- Les autres mammifères, y compris les primates du nouveau monde (Amériques) ont une vision dichromatique.
 - Ils disposent d'une opsine sensible au bleu, et d'une autre sensible aux ondes vert-rouge,
 - Ils peuvent distinguer le bleu du vert ou du rouge, mais ne font pas la différence entre vert et rouge (équivalent au daltonisme humain).
- Chez les primates de l'ancien monde, la présence d'opsines distinctes avec une sensibilité "plutôt rouge" et "plutôt verte" résulte d'une duplication du gène codant pour l'opsine rouge-verte. En effet, on trouve sur le chromosome X 2 gènes en tandem
 - OPN1LW: gène codant pour l'opsine rouge
 - OPN1MW: : gène codant pour l'opsine verte
- Le gène de l'opsine bleue (OPN1SW) est situé sur le chromosome 7




Une grande famille ... de gènes


- La plus grande famille de gènes chez les métazoaires est celle des récepteurs olfactifs.
- génome de la souris: ~800 gènes codant pour des récepteurs olfactifs
- génome humain: ~ 400 gènes codant pour des récepteurs olfactifs
- Cette énorme famille de gènes résulte de fréquentes duplications.
- Les duplications se produisent fréquemment au sein d'un chromosome: les groupes de paralogues proches se retrouvent sur le même chromosome.
- Les mutations subséquentes provoquent des divergences entre séquences des paralogues, qui induisent des différences fonctionnelles (spécificité olfactive de chaque récepteur).

Duplications de génomes complets

- On trouve dans les génomes des indices de duplication massives (chromosomes complets, génomes complets) qui se sont produites au cours de leur évolution.
- Génome de la levure
 - L'organisation chromosomiques des gènes de la levure du boulanger (Saccharomyces cerevisiae) suggère une duplication ancestrale du génome.
 - Le séquençage de génomes de levures multiples confirme cette hypothèse.
 - La duplication de chaque gène induit une redondance fonctionnelle.
 - On observe une disparition de l'une ou l'autre des copies, selon le gène.
- Génome de la paramécie (unicellulaire eucaryote)
 - 188 chromosomes!
 - L'analyse du génome révèle au moins 3 cycles de duplication suivis de divergences.
 - Après chaque duplication, une certaine proportion des gènes redondants disparaissent.
 - La dernière duplication est récente, de sorte que la plupart des gènes sont actuellement redondants.

Paramecium tetraurelia. Nature 444, 171–178 (2006). doi.org/10.1038/nature05230

Phylogénomique : retracer l'évolution des espèces à partir des séquences génomiques

Phylogénomique

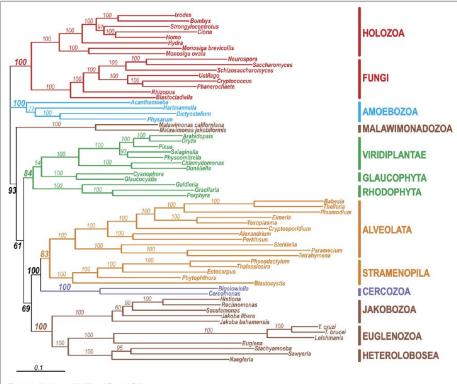


Figure 1. Maximum-Likelihood Tree of Eukaryotes

The tree includes 64 species and is based on 143 concatenated nucleus-encoded proteins (31,604 amino acid positions). Numbers indicate support values of RaxML analysis (100 replicates) with the WAG + F + Γ model. Posterior probabilities obtained in the Bayesian Inference with MrBayes are 1.0 for all branches. The scale bar denotes the estimated number of amino acid substitutions per site. The tree was rooted according to a gene fusion [13, 16].

- En phylogénie moléculaire, une approche classique consiste à se concentrer sur un gène considéré comme représentatif de l'évolution de la famille de gènes homologues, et à construire un arbre sur base de la divergence de séquence de ce gène.
- Ces approches peuvent maintenant être généralisées en comparant les séquences de plusieurs centaines de gènes (ci-contre, arbre basé sur 143 familles de protéines).
- Elles permettent d'inférer des phylogénies entre organismes très éloignés (règnes différents), et d'établir ainsi des scénarios concernant les premières étapes de la diversification des êtres vivants.

Source: Rodríguez-Ezpeleta et al. Curr Biol (2007) vol. 17 (16) pp. 1420-5 Toward resolving the eukaryotic tree: the phylogenetic positions of jakobids and cercozoans.

Suffit-il de manger des insectes pour être un Insectivore ?

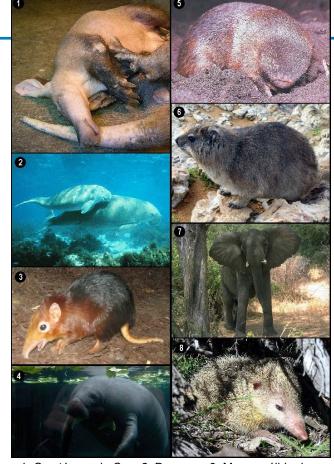
Au 20è siècle, les **tenrecs** étaient considérés comme une famille d'insectivores, présentant une ressemblance morphologique mais des différences anatomiques importantes par rapport aux hérissons.

Hérisson

classe	Mammifères
ordre	Insectivores
famille	Erinacéidés
genre et espèce	Erinaceus europaeus et autres

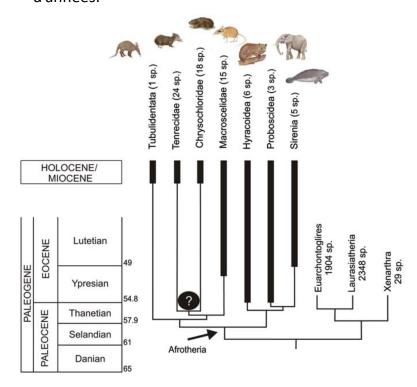
Tenrec

classe	Mammifères
ordre	Insectivores
famille	Tenrécidés
genres	Centetes ecaudatus
et espèces	(tenrec commun)
	Hemicentetes semispinosus
3.0	(tenrec à bandes ou
	tenrec strié)
	Limnogale mergulus
	(tenrec à pieds palmés)
	Microgale longicaudata
	(tenrec à longue queue)
	Oryzorictes hova
	(tenrec des rizières)
	Setifer setosus
	(tenrec-hérisson)
	et autres



Les Afrotheria

- Quels sont les plus proches cousins des éléphants ?
- A la fin des années 1990, l'inférence phylogénétique est mise à contribution pour identifier les premiers moments de la radiation des mammifères.
- Cette analyse révèle qu'une série d'espèces qu'il était extrêmement difficile de classer proviennent d'un branchement précoce au sein des mammifères.
- C'est notamment le cas du tenrec (8, 8b) dont l'apparence rappelle celle du hérisson, mais l'anatomie en diffère fortement.
- C'est sur cette base qu'a été constitué le groupe des Afrotheria, qui rassemble une série de mammifères aux morphologies les plus diverses.



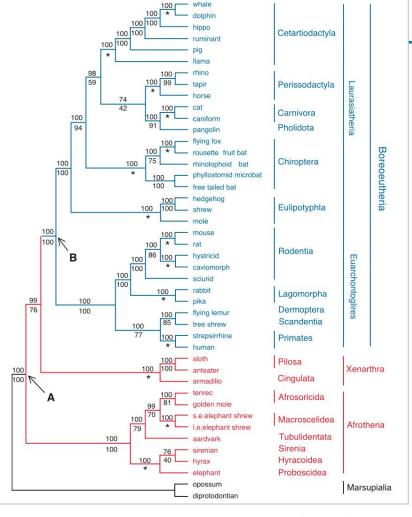
 Oryctérope du Cap; 2. Dugongs; 3. Macroscélide de Peters; 4. Lamantin; 5. Taupe dorée; 6. Daman du Cap;
 Éléphant de savane d'Afrique; 8. Tangue ("tailless tenrec"); 8, 8b: Tenrec http://upload.wikimedia.org/wikipedia/commons/0/01/Kleiner-igeltanrek-a.jpg

Les Afrotheria

 Sur base d'analyse de l'ADN, on estime que la divergence entre Afrotheria remonte à 60-55 millions d'années.

1. Oryctérope du Cap; 2. Dugongs; 3. Macroscélide de Peters; 4. Lamantin; 5. Taupe dorée; 6. Daman du Cap; 7. Éléphant de savane d'Afrique; 8. Tangue ("tailless tenrec"); 8, 8b: Tenrec http://upload.wikimedia.org/wikipedia/commons/0/01/Kleiner-igeltanrek-a.jpg

5


Radiation des mammifères

Resolution of the Early Placental Mammal Radiation Using Bayesian Phylogenetics

William J. Murphy, 1* Eduardo Eizirik, 1.2* Stephen J. O'Brien, 1†
Ole Madsen, 3 Mark Scally, 4.5 Christophe J. Douady, 4.5
Emma Teeling, 4.5 Oliver A. Ryder, 6 Michael J. Stanhope, 5.7
Wilfried W. de Jong, 3.8 Mark S. Springer 4†

Molecular phylogenetic studies have resolved placental mammals into four major groups, but have not established the full hierarchy of interordinal relationships, including the position of the root. The latter is critical for understanding the early biogeographic history of placentals. We investigated placental phylogeny using Bayesian and maximum-likelihood methods and a 16.4-kilobase molecular data set. Interordinal relationships are almost entirely resolved. The basal split is between Afrotheria and other placentals, at about 103 million years, and may be accounted for by the separation of South America and Africa in the Cretaceous. Crown-group Eutheria may have their most recent common ancestry in the Southern Hemisphere (Gondwana).

Fig. 1. Phylogeny of living placental mammals reconstructed using a Bayesian phylogenetic approach. An identical topology was obtained with maximum likelihood [$-\ln L = 211110.54$; see (15) for methodological details]. The number above each branch refers to the Bayesian posterior probability (shown as percentages; i.e., 95 represents a posterior probability of 0.95) of the node derived from 26,250 MCMC sampled trees on the basis of the complete 16.4-kb data. Additional analyses with the full data set and with data sets that varied taxon sampling (i.e., jackknifing single outgroup taxa) and character sampling (nuclear only and nuclear coding loci only) produced similarly high posterior probabilities (15). Values below branches represent percent support in maximum likelihood ($GTR+\Gamma+1$) nonparametric bootstrap. An asterisk indicates nodes constrained in the ML nonparametric bootstrap analysis. (A) Bifurcation between Afrotheria and Xenarthra + Boreoeutheria at approximately 103 million years, which corresponds to the vicariant event that separated Africa and South America (Fig. 28). (B) Branch where dispersal from South America to Laurasia is hypothesized to have occurred (15). Blue, monophyletic Northern Hemisphere group (i.e., Boreoeutheria); red, paraphyletic Southern Hemisphere group (i.e., Xenarthra + Afrotheria); black, outgroups.

Retracer l'origine de SARS-CoV-2 dans les génomes des coronavirus

La publication du génome de SARS-CoV-2


3 février 2020: publication du **génome complet de SARS-CoV-2**Recherche de virus similaires dans les bases de données de séquence. Les virus les plus proches sont des virus de chauves-souris (Bat CoV ZC45)

Dans le même article, les auteurs décrivent un nouveau génome de virus de chauve-souris : RaTG13

- virus connu le plus proche de SARS-CoV-2
- 96.2% d'identité sur l'ensemble du génome

Notes:

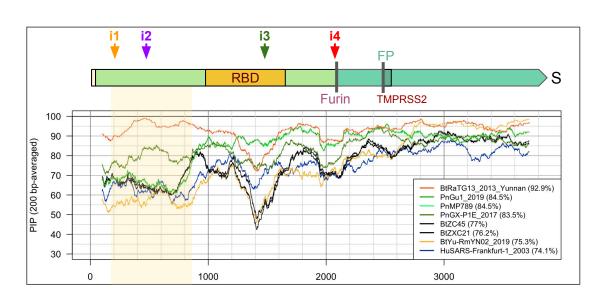
 Ce taux d'identité correspond à une divergence évolutive de 4 à 7 décennies. Il ne s'agit donc pas d'un parent direct de SARS-CoV-2 mais d'un cousin très éloigné.

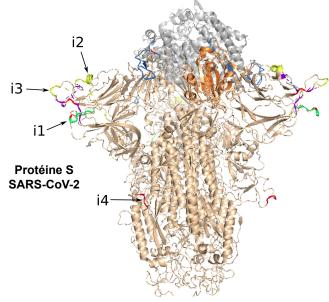
Un virus synthétique avec des bouts de HIV?

Le 17 avril 2020, le Professeur Luc Montagnier, Prix Nobel de médecine pour sa contribution à la découverte du HIV (le virus responsable du SIDA), défraie la chronique en annonçant sur plusieurs médias (Pourquoi Docteur, CNEWS) que le génome du coronavirus SARS-CoV-2, agent de la pandémie COVID-19, comporte quatre fragments de séquences provenant du HIV. De plus, il affirme que la présence de ces séquences ne résulte pas d'une recombinaison naturelle (fréquente chez les virus) ou d'un accident, mais d'un vrai travail d'ingénieur, effectué intentionnellement, vraisemblablement dans le cadre de recherches visant à développer des vaccins contre le HIV.

Pour appuyer sa théorie, Luc Montagnier cite deux études :

- le travail d'un collègue mathématicien, Jean-Claude Perez, qui "a fouillé les moindres détails de la séquence",
- une analyse des séquences génomiques et protéiques des coronavirus préalablement publiée par une équipe indienne, qui a, selon lui, "été forcée de rétracter" sa publication.


Selon Luc Montagnier, le virus covid19 est une manipulation humaine (17 avril 2020)


https://www.youtube.com/watch?v=qSWCLHIOiMo (devenue inaccessible depuis lors)

"Je suis arrivé à la conclusion qu'il y avait eu une manipulation de ce virus. [...] Il y a un modèle qui est évidemment le virus classique, et là c'était un modèle venant de la chauve-souris, et là, à ce modèle on a par-dessus ajouté les séquences du VIH, du SIDA. ... Non, ce n'est pas naturel, c'était un travail de professionnel, de biologiste moléculaire, très minutieux, on peut dire d'horloger, au niveau des séquences. Dans quel but ce n'est pas clair. Mon travail c'est d'exposer les faits, c'est tout. Je n'accuse personne, je ne sais pas qui a fait ça et pourquoi. La possibilité c'est qu'on a voulu faire un vaccin contre le SIDA. Donc on a pris des petites séquences du virus [HIV] et on les a installées dans la séquence plus grande du coronavirus. [...] Il y a quand même une volonté d'étouffement, nous ne sommes pas les premiers. Un groupe de chercheurs indiens très renommés avaient publié la même chose, on les a forcés à rétracter. Si vous regardez leur publication vous voyez une grande bande "annulé"."

Quatre insertions dans le gène S de SARS-CoV-2

- Les flèches indiquent la position des 4 insertions sur le gène S (gauche) et sur la protéine spicule (droite).
- Les 3 premières sont situées à l'extérieur de la protéine, dans des régions "exposées".

Alignement de séquences de SARS-CoV-2 sur le génome du HIV

Haut: fragment le plus significatif de l'alignement de la séquence du gène S sur le génome du VIH. Noter le score Expect = 7.5. Ce score n'est significatif que s'il est nettement inférieur à 1.

Bas: fragment le plus significatif de l'alignement d'une séquence aléatoire sur le génome du VIH.

Noter le score Expect = 2.1, supérieur à 1 et donc non-significatif (comme on s'y attend, puisque la séquence est aléatoire).

Conclusion: l'alignement sur lequel s'appuient Perez et Luc Montagnier correspond à ce qu'on s'attend à trouver par hasard en alignant des séquences de cette taille.

Sequence ID: <u>HQ</u>	<u>644953.1</u>	Length: 1143	Number of Matches: 1	Range 1: 967 to 994
Score	Expect	Identities	Gaps	Strand
38.3 bits(41)	7.5	25/28(89%)	0/28(0%)	Plus/Plus
Query 86	AATGGTACT	AAGAGGTTTGA'	TAACCCTG 113	
Sbjct 967	AATGGTACT	AAAAGGTTAGA'	TAACACTG 994	

HIV-1 iso	HIV-1 isolate patient B clone 16.3 from Netherlands envelope glycoprotein (env) gene, complete cds										
Sequence ID: <u>HQ386166.1</u>		Length: 2580	Number of Matcl	hes: 1	Range 1: 2493 to 2523						
Score		Expect	Identities	Gaps		Strand					
39.2 bits(42)	2.1	27/31(87%)	0/31(0%)		Plus/Minus					
Query	351		TTCTTTGTAATA	ACTGTATTATT	381						
Sbjct	2523	CCTAAAAG	PTCTTTGTAATA	TTTCTATAATT	2493						

Des insertions bizarres?

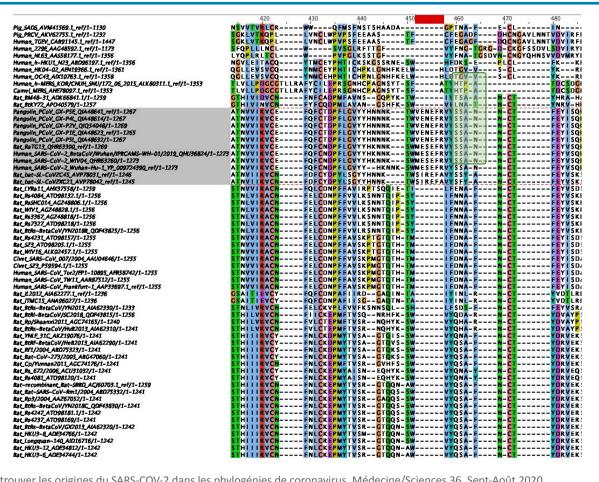
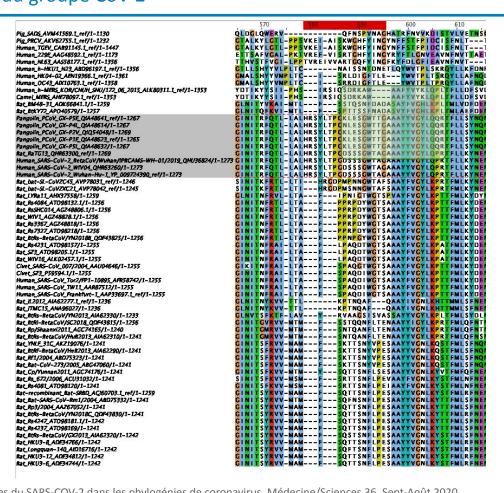

- Figure from Pradhan et al (2020), initially published on bioRxiv and retracted.
- The "multiple alignment" is actually a pairwise alignment + a consensus.
- The gaps obtained from a multiple alignment overlap with these ones, but they start and end at different positions.
- It is precisely because they did not do a multiple alignment that they did not realize that 3 of these insertions were not unique to SARS-CoV-2.

Figure 2: Multiple sequence alignment between spike proteins of 2019-nCoV and SARS. The sequences of spike proteins of 2019-nCoV (Wuhan-HU-1, Accession NC_045512) and of SARS CoV (GZ02, Accession AY390556) were aligned using MultiAlin software. The sites of difference are highlighted in boxes.


Insertion partagée entre tous les virus du groupe CoV-2

- Position: 153-158 de SARS-CoV-2
- Cette insertion se trouve chez les virus de pangolin + plusieurs chauve-souris
- Les résidus sont identiques entre SARS-CoV-2 et la souche RaTG13 de chauve-souris (la plus proche de SARS-CoV-2)
- Par contre elle présente 3 substitutions entre les souches de pangolin et SARS-CoV-2.

Insertion partagée par la majorité des virus du groupe CoV-2

- Position: 245-251 de SARS-CoV-2
- Cette insertion se trouve chez les virus de pangolin + la souche RaTG13 de chauve-souris
- Elle est cependant absente de 2 souches de chauves-souris appartenant au groupe CoV-2 : CoVZC45 et CoVZXC21
- Au-delà de l'insertion on trouve un bloc conservé (jusqu'à la position 595 de l'alignement).
- Au sein de ce bloc, une paire de résidus distingue les pangolins du groupe SARS2 + Bat RaTG13.

Insertion i3

- Position
 - 470-486 de
 SARS-CoV-2
 - 855-872 surl'alignement
- Commune au groupe pangolin + Bat_RaTG13 + SARS-CoV-2
- 2 substitutions uniques à Bat RaTG13

Insertion d'un site Furine (i4)

- Positions: 1181-1184 de l'alignement
- On trouve chez SARS-CoV-2
 un site unique SPRRAR, qui
 résulte d'une insertion
 SPRR et d'une substitution L
 -> A
- La séquence PRRA correspond au motif reconnu par la furine (protéase).
- Cette insertion est à l'origine du site de clivage responsable du caractère particulièrement virulent de SARS-CoV-2

```
Cm MERS AHE78097.1 ref
                                         SLCALP-DTPST----LTPRSVRSV
                                                                      20
Hu MERS 172-06 2015 ALK80311.1 ref
                                         SLCALP-DTPST---LTPRSVRSV
                                                                      20
Bt BM48-31 ADK66841.1
                                         GICAKYTNVSST----LVRSGGHSI
                                                                      21
Bt BtKY72 APO40579
                                         GICAKF-GSDKI----RMGOESI
                                                                      18
                                                                      18
BtYu-RmYN02 2019 S-gene 21544-25227 1
                                         GVCASY-NSPAA----RVGTNSI
Bt LYRall AHX37558
                                         GICASY-HTASL----LRNTDOKSI
                                                                      20
                                                                      20
Bt YN2018B QDF43825
                                         GICASY-HTVSS----LRSTSQKSI
                                                                      20
Bt Rs4874 AT098205.1
                                         GICASY-HTVSS----LRSTSOKSI
Cv 007-2004 AAU04646
                                         GICASY-HTVSS----LRSTSOKSI
                                                                      20
Hu SARS-Frankfurt-1 2003 AAP33697.1 ref GICASY-HTVSL----LRSTSOKSI
                                                                      20
                                                                      20
Bt rec-SARS 2008 ACJ60694.1 ref
                                         GICASY-HTVSL---LRSTSQKSI
Bt ZC45 AVP78031 ref
                                         GICASY-HTASI----LRSTSOKAI
                                                                      20
Bt ZXC2\overline{1} AVP7804\overline{2} ref
                                                                      20
                                         GICASY-HTASI----LRSTGQKAI
PnGu1 2019 S-gene_21541-25338_1
                                         GICASY-QTQTN----SRSVSSQAI
                                                                      20
Pn GX-P1E 2017 QIA48623 ref
                                         GICASY-HSMSS----LRSVNORSI
                                                                      20
Pn GX-P2V 2018 QIQ54048
                                         GICASY-HSMSS----FRSVNQRSI
                                                                      20
Bt RaTG13 2013 Yunnan QHR63300 ref
                                         GICASY-OTOTN----SRSVASOSI
                                                                      20
                                         GICASY-QTQTNSPRRARSVASOSI
Hu CoV2 WH01 2019 QHU36824 ref
                                                                      24
Bt JL2012 AIA62277.1 ref
                                         GICASY-HTASL----LRSTGOKSI
                                                                      20
                                         GICASY-HTAST----LRSIGOKSI
Bt YN2013 AIA62330
                                                                      20
Bt Rp-Shaanxi2011 AGC74165
                                         GICASY-HTASV----LRSTGQKSI
                                                                      20
                                                                      20
Bt SC2018 ODF43815
                                         GICASY-HTAST----LRSTGOKSI
Bt YNLF 31C AKZ19076
                                         GICASY-HTASV----LRSTGQKSI
                                                                      20
                                                                      20
Bt Cp-Yun 2011 AGC74176
                                         GICASY-HTASL----LRNTGOKSI
Bt Rs 672-2006 ACU31032
                                         GICASY-HTAST----LRSVGOKSI
                                                                      20
Bt Rm1/2004 ABD75332
                                         GICASY-HTASV----LRSTGQKSI
                                                                      20
                                                                      20
Bt YN2018C QDF43830
                                         GICASY-HTAST---LRSVGQKSI
Bt Rp3-2004 AAZ67052
                                         GICASY-HTAST----LRSVGOKSI
                                                                      20
Bt GX2013 AIA62320
                                         GICASY-HTASV----LRSTGQKSI
                                                                      20
Bt HKU3-12 ADE34812 ref
                                         GICASY-HTASV----LRSTGQKSI
                                                                      20
```


Conclusion concernant l'hypothèse de Luc Montagnier

Selon Luc Montagnier, le virus covid19 est une manipulation humaine (17 avril 2020)

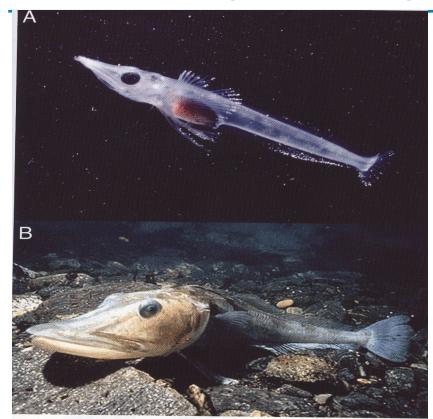
https://www.youtube.com/watch?v=qSWCLHIOiMo (devenue inaccessible depuis lors)

"Je suis arrivé à la conclusion qu'il y avait eu une manipulation de ce virus. [...] Il y a un modèle qui est évidemment le virus classique, et là c'était un modèle venant de la chauve-souris, et là, à ce modèle on a par-dessus ajouté les séguences du VIH, du SIDA. ... Non, ce n'est pas naturel, c'était un travail de professionnel, de biologiste moléculaire, très minutieux, on peut dire d'horloger, au niveau des séquences. Dans quel but ce n'est pas clair. Mon travail c'est d'exposer les faits, c'est tout. Je n'accuse personne, je ne sais pas qui a fait ça et pourquoi. La possibilité c'est qu'on a voulu faire un vaccin contre le SIDA. Donc on a pris des petites séquences du virus [HIV] et on les a installées dans la séquence plus grande du coronavirus. [...] Il y a quand même une volonté d'étouffement, nous ne sommes pas les premiers. Un groupe de chercheurs indiens très renommés avaient publié la même chose, on les a forcés à rétracter. Si vous regardez leur publication vous voyez une grande bande "annulé"."

Nos analyses démontrent que l'hypothèse d'une insertion de fragments de VIH dans un châssis de coronavirus ne tient pas la route.

Elle reposait sur une méconnaissance des méthodes bioinformatiques et des indicateurs statistiques d'analyse de séquences.

Elle est totalement incompatible avec la présence de ces mêmes insertions dans plusieurs génomes, obtenus à partir d'échantillons collectés à des dates et endroits indépendants, et dont la séquence avait été publiée bien avant la pandémie.


Pseudo-gènes ("gènes fossiles")

Gènes fossiles / pseudogènes

- Sean Carroll (2006) présente une série de cas de gènes « fossiles »: gènes qui ont perdu leur activité, mais dont on retrouve des traces dans les génomes.
- La "fossilisation" se manifeste généralement par l'insertion de nombreux codons stops dans les séquences codantes.
- Selon Carroll, cette fossilisation succède à une relaxation de la pression sélective:
 - Tous les gènes sont en permanence soumis au bombardement des mutations.
 - Les mutations qui affectent la fonction d'un gène sont éliminées par la sélection naturelle (sélection « purificatrice »).
 - Si, pour une raison ou une autre, un gène devient dispensable pour un organisme donné dans un environnement donné, cette sélection est relâchée, et les mutations s'accumulent.
- Exemple: plusieurs espèces de levure ont perdu, de façon indépendante, la capacité de digérer le galactose. Dans chaque cas, chacun des 7 gènes GAL est fossilisé.
- Note: on dénomme actuellement ces régions génomiques "pseudogènes", d'une part parce qu'il ne s'agit pas à proprement parler de gènes (ils sont non fonctionnels) et d'autre part pour éviter la confusion avec les gènes (fonctionnels) identifiés dans les génomes d'organismes fossiles (par exemple les gènes d'Homo neandertalis).

La fossilisation des gènes de l'hémoglobine chez le poisson des glaces.

A Juvenile icefish. The transparent appearance is due to evolutionary loss of scales and red blood cells. (Photograph by Flip Micklin.)

B Adult mackeral icefish, Champsocephalus gunnari.

- Les poissons des glaces (famille des Channichthyidae) vivent dans l'arctique, dans des eaux dont la température varie de 4°C à -2°C (du fait de la salinité, elle est liquide).
- Leur sang contient des protéines « antigels », composées de motifs répétitifs.
- Le poisson des glaces n'a pas de globules rouges!
- Les échanges d'oxygène sont assurés à travers la peau, et l'O2 dissous dans le sang est transféré aux organes.
- Leur corps ne contient pas non plus d'hémoglobine ni de myoglobine fonctionnelle.
- Cependant, on trouve dans leur génome des gènes fossilisés pour les deux chaînes de l'hémoglobine.

La perte de la perception des couleurs

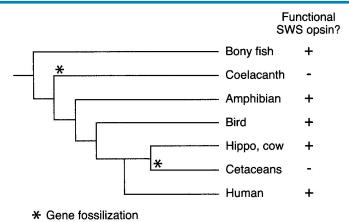
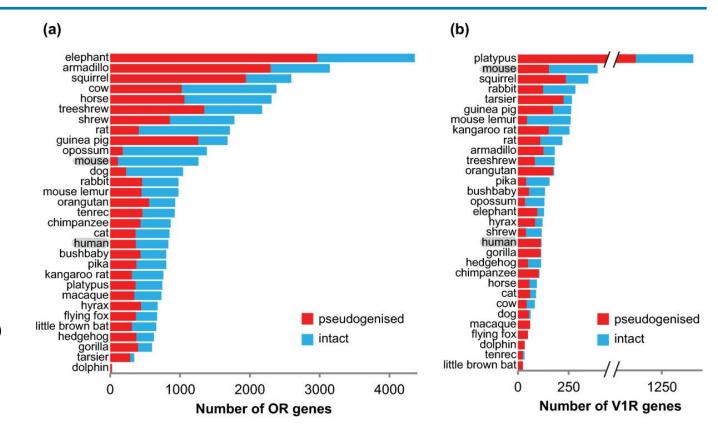


FIG. 5.2. The same opsin gene has been fossilized twice. The distribution of different mutations found in the coelacanth and cetacean SWS opsins and the evolutionary relationship of these species indicates that the SWS opsin was fossilized at least twice (asterisk). Figure by Jamie Carroll.

- Chez les coelacanthes et les cétacés, la perception des couleurs a été perdue.
- Les gènes des "c-opsines" (opsines responsables de la perception des couleurs) sont toujours présents, mais ils ne sont plus fonctionnels, du fait d'un grand nombre de mutations (y compris des codons stops).


La pseudogénisation des récepteurs olfactifs (OR) et des vomérorécepteurs (VR)

Gauche: récepteurs olfactifs (OR)

- Sur les 25.000 gènes de la souris, 1.400 codent pour des récepteurs olfactifs.
- Chez l'humain, la moitié de ces gènes sont fossilisés, et ne peuvent plus produire de récepteurs fonctionnels.
- L'analyse des génomes d'autres mammifères montre que la perte massive de récepteurs olfactifs se retrouve chez les primates de l'ancien monde, autrement dit ceux qui ont acquis la vision trichromatique.

Droite: vomérorécepteurs (VR)

- Homologues des récepteurs olfactifs impliqués dans la perception des phéromones.
- Humain et gorille : (quasiment)
 pas de communication par
 phéromones, mais le génome
 comporte une centaine de
 vomérorécepteurs
 pseudogénisés.

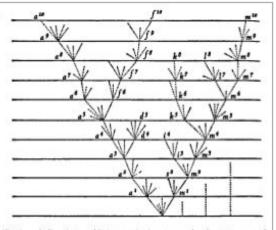
L'évolution en marche: la fossilisation massive des gènes de *Mycobacterium leprae*

- Mycobacterium tuberculosis
 - Extracellulaire
 - 4.189 gènes codant pour des protéines
- Mycobacterium leprae
 - Intra-cellulaire
 - 1.605 gènes codant pour des protéines
 - □ A perdu (par délétions) ~1000 gènes présents chez *M.tuberculosis*
 - On trouve également plus de 1.000 gènes fossiles.

La fossilisation est une voie de non-retour

Dès que la pression sélective est relâchée, la probabilité de fossilisation d'un gène est très élevée.

Par contre, la probabilité que de revenir à une copie fonctionnelle à partir d'un gène fossilisé est quasiment nulle.


Ces probabilités sont discutées par S. Carroll.

Quand les branches de l'arbre du vivant s'entrecroisent

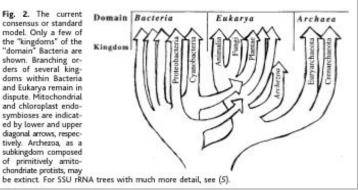
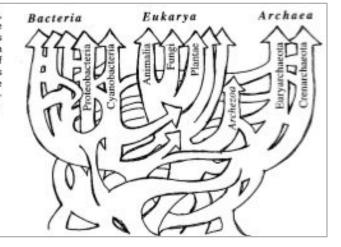

Quand les branches de l'arbre du vivant s'entrecroisent

Fig. 1. Part of the only figure in the Origin of Species. Darwin first uses it to represent the divergence of variants within a species, showing successively more difference in a single lineage (a1 through a10 and splitting into multiple lineages (m, s, i, and so forth), some of which will become new species. Later, he expands the tree metaphor, explaining that Timbs divided into great branches ... were themselves once, when the tree was small. budding twigs; and this connection of the former and present buds by ramifying branches may

well represent the classification of all extinct and living species in groups subordinate to groups" (3, p. 171).

Fig. 2. The current consensus or standard model. Only a few of the "kingdoms" of the "domain" Bacteria are shown. Branching orders of several kingdoms within Bacteria and Eukarva remain in dispute. Mitochondrial and chloroplast endosymbioses are indicated by lower and upper diagonal arrows, respectively. Archezoa, as a subkingdom composed of primitively amitochondriate protists, may

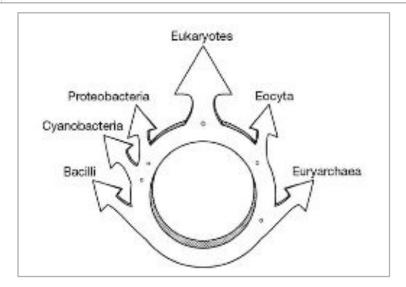


L'arbre de la vie de Darwin (Fig 1) est revisité par Doolittle (1999) pour tenir compte

Fig 2: des événements d'endosymbiose liés à l'apparition des organelles des eucaryotes (mitochondrie et chloroplaste).

Fig 3: des transferts horizontaux entre génomes de procaryotes.

Fig. 3. A reticulated tree, or net, which might more appropriately represent life's history. Martin (16), in a review covering many of the same topics as this one, has presented some striking colored representations of such patterns.


Doolittle, W. F. (1999). Phylogenetic classification and the universal tree. Science 284, 2124-9. doi.org/10.1126/science.284.5423.2124

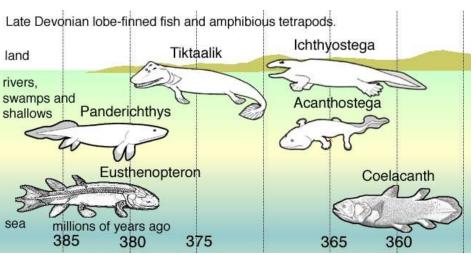
The ring of life provides evidence for a genome fusion origin of eukaryotes

Maria C. Rivera 1.3.4 & James A. Lake 1.2.4

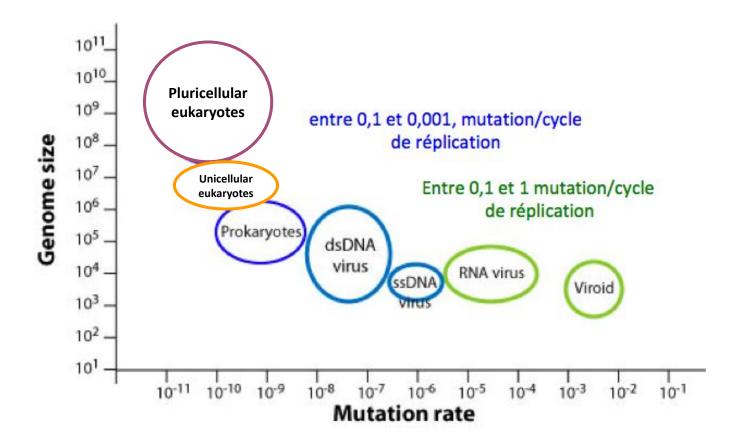
¹Molecular Biology Institute, MCD Biology, ²Human Genetics, ³IGPP, and ⁴Astrobiology Institute, University of California, Los Angeles 90095; USA

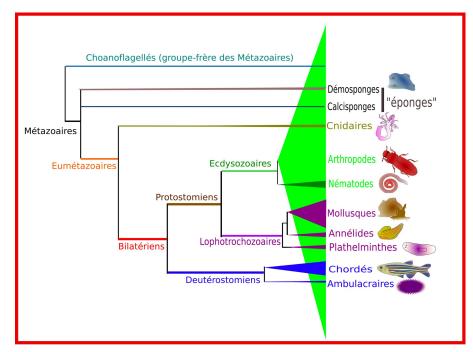
Genomes hold within them the record of the evolution of life on Earth. But genome fusions and horizontal gene transfer seem to have obscured sufficiently the gene sequence record such that it is difficult to reconstruct the phylogenetic tree of life. Here we determine the general outline of the tree using complete genome data from representative prokaryotes and eukaryotes and a new genome analysis method that makes it possible to reconstruct ancient genome fusions and phylogenetic trees. Our analyses indicate that the eukaryotic genome resulted from a fusion of two diverse prokaryotic genome, and therefore at the deepest levels linking prokaryotes and eukaryotes, the tree of life is actually a ring of life. One fusion partner branches from deep within an ancient photosynthetic clade, and the other is related to the archaeal prokaryotes. The eubacterial organism is either a proteobacterian, or a member of a larger photosynthetic clade that includes the Cyanobacteria and the Proteobacteria.

- Rivera & Lake (2004) analysent les relations entre tous les gènes d'eukaryotes, d'eubactéries, et d'archées.
- Leur analyse suggère que les génomes eukaryotes résulteraient d'une fusion entre un génome de bactérie et un génome d'archée.
- Les gènes provenant des archées sont majoritairement impliqués dans des fonctions de maintien de la cellule (réplication, transcription et sa régulation).
- Les gènes provenant des archées sont majoritairement impliqués dans le métabolisme.


Rivera, M. C. and Lake, J. A. (2004). The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431, 152-5. https://doi.org/10.1038/nature02848

Matériel supplémentaire

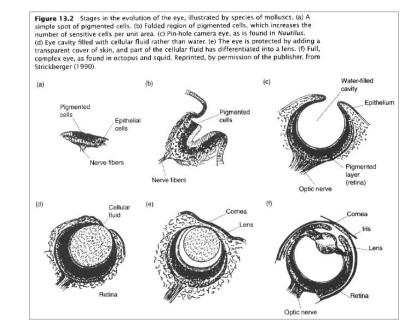

Le coelacanthe, un « fossile vivant »?


- En 1938, Marjorie Courtenay-Latimer découvre dans les filets de pêcheurs un poisson ne ressemblant à aucune espèce connue.
- Elle envoie une description du fossile au professeur James Leonard Brierley Smith, qui y reconnaît une espèce qu'on pensait disparue depuis 300Ma: le coelacanthe.
- A première vue, la morphologie du coelacanthe a peu évolué depuis plus de 300Ma. Pour cette raison, on l'a qualifié de « fossile vivant ».
- Cependant, cette appellation est inappropriée : les archéologues identifient de nombreuses différences entre coelacanthes actuels et les espèces fossiles.

Taux de substitutions représentatifs chez différents groupes taxonomiques

Structure et complexité de l'oeil

Exercice : identifiez les relations d'homologie et d'analogie entre les structures d'yeux représentées sur cette diapo.


Figures:

 $\frac{\text{http://acces.ens-lyon.fr/acces/thematiques/evolution/archives-2/corbeille/relations-de-parente/comprendre/les-grandes-lignes-de-la-classification-phylogenetique-des-metazoaires}$

https://www.futura-sciences.com/sante/dossiers/medecine-oeil-vision-dela-vision-667/page/2/

Carroll, S. B. The making of the fittest: DNA and the ultimate forensic record of evolution. (Quercus, 2009).

Drosophile (insecte) Pieuvre Humain (mammifère)

