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Discrete distributions

Discrete distributions of probabilities

The expression discrete distribution denotes probability
distribution of variables that only take discrete values (by opposition
to continuous distributions).

Notes:

I In probabilities, the observed variable (x) usually represents the
number of successes of a series of tests, or the counts of some
observation. In such cases, its values are natural numbers
(x ∈ N).

I The probability P(x) takes real values comprised between 0 and
1, but its distribution is said *discrete¨since it is only defined
fora set of discrete values of X . It is generally represented by a
step function.



Discrete distributions

Geometric distribution

Application: waiting time until the first appeearance of an event in
a Bernoulli schema.

Examples:

I In a series of dices rollings, count the number rolls (x) before
the first occurrence of a 6 (this occurrence itself is not taken
into account).

I Length of a DNA sequence before the first occurrence of a
cytosine.
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Mass function of the geometric distribution
The Probability Mass Function (PMF ) indicates the probability
to observe a particular result.

For the geometric distribution, it indicates the probability to observe
exactly x failures before the first success, in a series of independent
trials with a probability of success p.

P(X = x) = (1− p)x · p

Justification:
I The probability of failure for the first trial is q = 1− p

(complementary events).
I Bernoulli schema → the trials are independent → the

probability of the series is the product of probabilities of its
successive outcomes.

I One thus computes the product of probabilities of the x initial
failures and of the success at the (x + 1)th trial.

Note: the PMF of discrete distributions relates to the concept of
density used for continuous distributions.
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Geometric PMF
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Figure 1: **Fonction de masse de la loi géométrique**. Gauche:
ordonnée en échelle logarithmique.
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Distribution tails and cumulative distribution
function

The tails of a distribution are the areas comprised under the density
curve up to a given value (left tail) or staring from a given value
(right tail).
I The right tail indicates the probability to observe a result (X )

smaller than or equal to a given value (x): P(X ≤ x).
I Definition: the Cumulative Density Function (CDF )

P(X ≤ x) indicates the probability for a random variable X to
take a value smaller than or equal to a given value (x). It
corresponds to the left tail of the distribution (including the x
value).

I The left tail of a distribution indicates the probability to
observe a result higher than or equal to a given value:
P(X ≥ x).
I Note: in the next chapters we will see the use of the right tail

of different distributions to measure the P value, in the context
of functional enrichment tests, motif over-representations, peak
detection, . . .
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Distribution tails and cumulative distribution
function
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Figure 2: **Tails and Cumulative Density Function of the geometric
distribution**.
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Binomial distribution
The binomial distribution indicates the probability to observe a
given number of successes (x) in a series of n independent trials
with constant success probability p (Bernoulli schema).

Binomial PMF

P(X = x) =
(

n
x

)
·px ·(1−p)n−x = Cx

n px (1−p)n−x = n!
x !(n − x)!px (1−p)n−x

Binomial CDF

P(X ≥ x) =
n∑

i=x
P(X = i) =

n∑
i=x

C i
npi(1− p)n−i

Properties

I Expectation (number of successes expected by chance):
< X >= n · p

I Variance: σ2 = n · p · (1− p).
I Note: the variance of the binomial is inferior to its mean

I Standard deviation: σ =
√

n · p · (1− p)
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i-shaped binomial distribution
The binomial distribution can take various shapes depending on the
values of its parameters (success probability p, and number of trials
n).

When the expectation (p · n) is very small, the binomial distribution
is monotonously decreasing and is qualified of i-shaped.
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Figure 3: Distribution binomiale en forme de i.
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Asymmetric bell-shaped binomial distribution

When the probability is relatively high but still lower than 0.5, the
distribution takes the shape of an asymmetric bell.
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Figure 4: Distribution binomiale en forme de cloche asymétrique.
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Symmetric bell-shaped binomial

When the success probability p is exactly 0.5, the binomial
distribution takes the shape of a symmetrical bell.
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Figure 5: Distribution binomiale en forme de cloche symétrique (p=0.5).
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j-shaped binomial distribution

Then the success probability is close to 1, the distirbution is
monotonously increasing and is qualified of ***j-shaped distribution.
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Figure 6: Distribution binomiale en forme de j.
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Examples of applications of the binomial

1. Dices: number of 6 observed during a series of 10 dice rolls
2. Sequence alignment: number of identities between two

sequences alignmed without gap and with an arhbitrary offset.
3. Motif analysis: number of occurrences of a given motif in a

genome.

Note: the binomial assumes a Bernoulli schema. Forexamples 2
and 3 this amounts to consider that nucleotides are concatenated in
an independent way, which is quite unrealistic.
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Poisson law
The Poisson law describes the probability of the number of
realisations of an event during a fixed time interval, assuming that
the average number of events is constant, and that the events are
independent (previous realisations do not affect the probabilities of
future realisations).
Poisson Probability Mass Function

P(X = x) = λx

x ! e−λ

I x is the number of event realisations
I λ (Greek letter “lambda”) represents the expectation, i.e. the

average number of occurrences that would be obtained by
running the same test an infinite number of times;

I e is the exponential base (e = 2.718).
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Properties of the Poisson distribution

I Expectation (number of realisations expected by chnace):
< X >= λ (by construction)

I variance: σ2 = lambda (the variance equals the mean!)
I Standard deviation: σ =

√
λ
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Application: mutagenesis
I A bacterial population is submitted to a mutagen (chemical

agent, irradiations). Each cell is affected by a particular
number of mutations.

I Taking into account the dosis of the mutagen (exposure time,
intensity, concentration) one could take an empirical measure of
the mean number of mutations by individual (expectation, λ).

I The Poisson law can be used to describe the probability for a
given cell to have a given number of mutations (x = 0, 1, 2, ...).

Historical experiment by Luria-Delbruck (1943)
In 1943, Salvador Luria and Max Delbruck demonstrated that when
cultured bacteria are treated by an antibiotic, the mutations that
confer resistance are not induced by the antibiotic itself, but
preexist. Their demonstration relies on the fact that the number of
antibiotic-resistant cells follows a Poisson law (Luria & Delbruck,
1943, Genetics 28:491–511).

https://www.ncbi.nlm.nih.gov/pubmed/17247100
https://www.ncbi.nlm.nih.gov/pubmed/17247100
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Convergence of the binomial towards the Poisson

Under some circumstances, the binmial law converges towards a
Poisson.
I very small probability of success (p � 1)
I large number of trials (n)

TO DO



Discrete distributions

Netative binomial: number of successes before the
r th failure

The negative binomial distribution (also called Pascal
distribution) indicates the probability of the number of successes
(k) before the r th failure, in a Bernoulli schema with success
probability p.

NB(k|r , p) =
(

k + r − 1
k

)
pk(1− p)r

This formula is a simple adaptation of the binomial, with the
difference that we know that the last trial must be a failure. The
binomial coefficient is thus reduced to choose the k successes
among the n − 1 = k + r − 1 trials preceding the r th failure.
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Negative binomial: alternative formulations

It can also be adapted to indicate related probabilities.
I Number of failures (r) before the kth success.

NB(r |k, p) =
(

k + r − 1
r

)
pk(1− p)r

I Number of trials (n = k + r − 1) before the r th failure.

NB(n|r , p) =
(

n − 1
r − 1

)
pn−r (1− p)r
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Negative binomial density
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Figure 7: Negative binomial.
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Properties of the negative binomial

The variance of the negative binomial is higher than its mean. It is
therefore sometimes used to model distributions that are
over-dispersed by comparisong with a Poisson.

NB(r |k, p) =
(

k + r − 1
r

)
pk(1− p)r

I Parameters:
I p: probability of success at each trial
I r : number of failures
I k: number of successes before the r th failure

I Mean: pr
1−p

I Variance: p(1−p)
p2
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Exercise – Negative binomial
Each student chooses a value for the maximal number of failures (r).

1. Read carefully the help of the negative binomial functions:
help(NegBinomial)

2. Random sampling: draw of rep = 100000 random numbers
from a negative binomial distribution (rndbinom()) to
compute the distribution of the number of successes (k) before
the r th failure.

3. Compute the expected mean and variance of the negative
binomial.

4. Compute the mean and variance from your sampling
distribution.

5. Draw an histogram with the number of successes before the r th

failure.
6. Fill up the form on the collective result table

https://docs.google.com/spreadsheets/d/1Kl_0ln0_dZycK17Nqyu44kw9R0dtVp5lflXRtN7pAhA/edit#gid=0
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Solution to the exercise – negative binomial
r <- 6 # Number of failures
p <- 0.75 # Failure probability
rep <- 100000
k <- rnbinom(n = rep, size = r, prob = p)
max.k <- max(k)
exp.mean <- r*(1 - p)/p
rand.mean <- mean(k)
exp.var <- r*(1 - p)/p^2
rand.var <- var(k)
hist(k, breaks = -0.5:(max.k + 0.5), col = "grey", xlab = "Number of successes (k)",

las = 1, ylab = "", main = "Random sampling from negative binomial")
abline(v = rand.mean, col = "darkgreen", lwd = 2)
abline(v = exp.mean, col = "green", lty = "dashed")
arrows(rand.mean, rep/20, rand.mean + sqrt(rand.var), rep/20,

angle = 20, length = 0.1, col = "purple", lwd = 2)
text(x = rand.mean, y = rep/15, col = "purple",

labels = paste("sd =", signif(digits = 2, sqrt(rand.var))), pos = 4)
legend("topright", legend = c(

paste("r =", r),
paste("exp.mean =", signif(digits = 4, exp.mean)),
paste("mean =", signif(digits = 4, rand.mean)),
paste("exp.var =", signif(digits = 4, exp.var)),
paste("var =", signif(digits = 4, rand.var))
))

Random sampling from negative binomial

Number of successes (k)
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sd = 1.6

r = 6
exp.mean = 2
mean = 1.982
exp.var = 2.667
var = 2.616

kable(data.frame(r = r,
exp.mean = exp.mean,
mean = rand.mean,
exp.var = exp.var,
var = rand.var), digits = 4)

r exp.mean mean exp.var var
6 2 1.9818 2.6667 2.6165
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Negative binomial for over-dispersed
counts
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