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Contents
We present here one of the most popular applications of statistics: the mean comparison test.

This test is used in a wide variety of contexts, and we will apply it here to two data types:

1. Artificial data generated by drawing samples in two populations following normal distributions, and
whose means will be either identical or different, depending on the case. The goal will be to understand
how to run the test and how to unterpret the results, in conditions where we control all the parameters
(we know whether or not we created populations with equal or different means).

2. Transcriptome data obtained with microarrays. We will test whether a give gene is expressed
differentially between two groups of biological samples (e.g. patients suffering from two different types
of cancers).

Note: the microarray technology has been replaced by NGS, and RNA-seq has now been widely
adopted for transcriptome studies. However, differential analysis with RNA-seq data relies on more
advanced concepts, which will be introduvced in other courses.

The hypotheses
General principle:
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• We observe a difference between sample means, and we would like to know whether this difference
results from sampling effects or from an actual difference between the population means.

• We oppone the null hypothesis (H0) according to which there is no difference between the two
populations, and the alternative hypothesis (H1), which states that there is a difference.

• We evaluate the P-value, i.e. the probability that a random sampling under the null hypothesis would
return a difference at least as high as what we observe.

• If this P-value is very weak (below a given threshold α), we reject the null hypothesis (RH0), else we
(temporarily) accept it (AH0).

Two-tailed test
In the two-tailed test, we are a priori interested by a difference in either direction (µ1 > µ2 or µ2 > µ2).

H0 : µ1 = µ2

H1 : µ1 6= µ2

One-tailed test
In the one–tailed test, we are specifically interested by detecting differences with a given sign. The null
hypothesis thus covers both the equality and the differences with the opposite sign.

Positive difference (right-tailed test):

H0 : µ1 ≤ µ2

H1 : µ1 > µ2

Negative difference (left-tailed test):

H0 : µ1 ≥ µ2

H1 : µ1 < µ2

Assumptions
• There are several possible methods to test the mean equality.

• The choice of a method depends on the nature of the data.

• Before running the test, it is crucial to answer some questions in order to choose the appropriate
method.

• This amounts to check the assumptions, i.e. a series of conditions of applicability for the selected
method.

Normality assumption
Do the two populations to be compared follow normal distributions?

• If so, we can run parametric tests (which rely on a normality assumption).

• Else, we must use non-parametric tests.

Why? Because the tables used to evaluate the probability of risk are derived from on mathematical
models relying on a normality assumption.

• In case of non-normality, do we dispose of large-sized samples? If so, we can use parametric tests
despite the non-normality.
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Why? Because, by virtue of the Central Limit Theorem, the sample means tend towards a normal
distribution even though the original populations are not normal.

Homoscedasticity assumption (equality of population variances)
For parametric tests, the second question is: do the two population have the same variance?

• Yes → we can use Student test

• No → we must use Welch test

Why? Student probability distribution was computed based on a homoscedasticity hypothesis. Welch
test is a variation on Student test, which corrects the probabilities in case of heteroscedasticity
(unequal variances) by modifying the number of degrees of freedom as a function of the difference
between variances.

Flowchart for the choice of a mean comparison test

Choice of a mean comparison test

yes no

yes

yes no

no

normality?

Parametric Large samples?

Equal var? Non−parametric

Student Welch
Wilcoxon

Mann−Whitney
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Student test
Assumptions: normalité (or large samples), homoscedasticity.

Student’s statistics:

tS = δ̂

σ̂δ
= x̄2 − x̄1√

n1s2
1+n2s2

2
n1+n2−2

(
1
n1

+ 1
n2

)
Population and sample parameters
For a finite population, the population parameters are computed as follows.

Parameter Formula

Population mean µ = 1
N

∑N
i=1 xi

Population variance σ2 = 1
N

∑N
i=1(xi − µ)2

Population standard deviation σ =
√
σ2

Where xi is the ith measurement, and N the population size.

However, in practice we are generally not in state to measure xi for all individuals of the population. We
thus we have to estimate the population parameters (µ, σ2) from a sample.

Sample parameters are computed with the same formulas, restricted to a subset of the population.

Parameter Formula
Sample mean x̄ = 1

n

∑n
i=1 xi

Sample variance s2 = 1
n

∑n
i=1(xi − x̄)2

Sample standard deviation s =
√
s2

where n is the sample size (number of sampled individuals), and x̄ the sample mean.

Sampling issues: why n-1 and not simply n?
The sample mean is an unbiased estimator of the population mean. Each time we select a sample we
should expect some random fluctuations, but if we perform an infinite number of sampling trials, and compute
the mean of each of these samples, the mean of all these sample means tends towards the actual mean of the
population.

On the contrary, the sample variance is a biased estimator of the population variance. On the average, the
sample variance under-estimates the population variance, but this can be fixed by multiplying it by a simple
correcting factor: n/(n− 1).

Parameter Formula
Sample-based estimate of the population mean µ̂ = x̄
Sample-based estimate of the population variance σ̂2 = n

n−1s
2 = 1

n−1
∑n
i=1(xi − x̄)2

Sample-based estimate of the population standard
deviation

σ̂ =
√
ŝ2

Greek symbols (µ, σ: population parameters; Roman symbols (x̄, s): sample parameters; the “hat” symbolˆ
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reads “estimation of ”.

R var() and sd() functions
Beware: the R functions var() and sd() directly compute an estimate of the population variance (σ̂2) and
standard deviation (σ̂), respectively, instead of computing the variance (x̄) and standard deviation (s) of the
input data.
x <- c(1, 5)

n <- length(x) # Gives 2
sample.mean <- mean(x) # Gives 3
sample.var <- sum((x - sample.mean)^2) / n # Gives 4
pop.var.est <- sum((x - sample.mean)^2) / (n - 1) # Gives 8
r.var <- var(x) # Gives 8

kable(data.frame(sample.var = sample.var, pop.var.est = pop.var.est, r.var = r.var))

sample.var pop.var.est r.var
4 8 8

P-value
This statistics can be used to compute an P-value (P ), which measures the probability to obtain, under
the null hypothesis, a tS statistics at least as extreme as the one observed. Extreme refers here to the
tail(s) of the distribution depending on the orientation of the test.

In the case of hypothesis testing, the P-value can be interpreted as an evaluation of the risk of first kind
error, which corresponds to the risk of rejecting the null hypothesis whereas it is true. ## Degrees of
freedom for Student tst

The shape of the Student distribution depends on a parameter named degrees of freedom (ν), which
represents the number of independent variables used in the equation.

In a two-sample t-test (as in our case), the degrees of freedom are computed as the total number of elements
in the respective samples (n1, n2) minus the number of means estimated from these elements (we estimated
the means of group 1 and group 2, respectively). Thus:

νS = n1 + n2 − 2

In classical texbooks of statistics, the p-value can be found in Student’s t table.

With R, the p-value of a t statistics can be computed wiht the function pt().

Student distribution
Decision

• Classically, one choses a priori a threshold on p-value, denoted α (e.g. α = 0.05).
• If P < α, the null hypothesis is rejected (RH0) and the test is declared positive.
• If P ≥ α, the null hypothesis is accepted (AH0) and the test is declared negative.

Orientation of the test Decision criterion

Right-tailed RH0 if tS > tn1+n2−2
1−α

Left-tailed RH0 if tS < tn1+n2−2
alpha = −tn1+n2−2

1−α
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Orientation of the test Decision criterion

Two-tailed RH0 if |tS | > tn1+n2−2
1−α

2

The two-tailed test splits the risk symmetrically on the left and right tails (α2 on each side).

Welch t statistics
Welch’s t-test defines the t statistic by the following formula.

tW = x̄2 − x̄1√
s2

1
n1

+ s2
2
n2

Where:

• the indices 1 and 2 denote the respective populations
• x̄i is the mean of sample i,
• s2

i the sample variance,
• ni the sample size.

Welch degrees of freedom
The Welch test corrects the impact of heteroscedacity by adapting the degrees of freedom (ν) of the Student
distribution according to the respective sample variances.

ν =

(
s2

1
n1

+ s2
2
n2

)2

s4
1

n2
1(n1−1) + s4

2
n2

2(n2−1)

• You generally don’t have to compute this by yourself, it is done automatically in R.

• Under homoscedasticity, Student and Welch degrees of freedom are equal.

• Under homoscedasticity, the power of the test (capacity to reject H0 under H1) is higher for Student
than Welch.

Summary table: notations
Greek symbols (µ, σ) denote population-wide statistics, and roman symbols (x̄, s) sample-based statistics.

Symbol Description
µ1, µ2 Population means
δ = µ2 − µ1 Difference beyween population means
σ1, σ2 Population standard deviations
n1, n2 Sample sizes
x̄1, x̄2 Sample means
d = x̄2 − x̄2 Effect size, i.e. difference between sample means
s2

1, s
2
2 Sample variances

s1, s2 Sample standard deviations

Summary table: formulas
The “hat” (̂) symbol is used to denote sample-based estimates of population parameters.

6



−10 −5 0 5 10

0.0

0.1

0.2

0.3

0.4

Student density

x

D
en

si
ty

normal
student, df= 30
student, df= 10
student, df= 5
student, df= 2
student, df= 1

−10 −5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

Student CDF

x

C
D

F

normal
student, df= 30
student, df= 10
student, df= 5
student, df= 2
student, df= 1

−10 −5 0 5 10

1e−22

1e−17

1e−12

1e−07

1e−02

Student density

x

D
en

si
ty

normal
student, df= 30
student, df= 10
student, df= 5
student, df= 2
student, df= 1

−10 −5 0 5 10

1e−24

1e−19

1e−14

1e−09

1e−04

Student CDF

x

C
D

F

normal
student, df= 30
student, df= 10
student, df= 5
student, df= 2
student, df= 1

Figure 1: Student density (left) and CDF (right) on linear (top) or logarithmic (bottom) scale. The log scale
highlights the rather low convergence in the tails.

Symbol Description

d = δ̂ = µ̂2−
µ̂1 = x̄2 − x̄1

d = Effect size (difference between sample means), estimator of the difference between
population means δ.

σ̂p =√
n1s2

1+n2s2
2

n1+n2−2

Estimate of the pooled standard deviation under variance equality assumption

σ̂δ =

σ̂p

√(
1
n1

+ 1
n2

)Standard error about the difference between means of two groups whose variances are
assumed equal (Student).

tS = δ̂
σ̂δ

=
x̄2−x̄1√

n1s2
1+n2s2

2
n1+n2−2

(
1
n1

+ 1
n2

)Student t statistics

νS =
n1 + n2 − 2

degrees of freedom for Student test

tW =
x̄1−x̄2√
s2

1
n1

+
s2

2
n2

Welch t statistics

νW =
TOBEADDED

degrees of freedom for Welch test

Exercise 1
A researcher analysed the level of expression of a gene of intrerest in 50 patients (np = 50)

Un chercheur a analysé, à l’aide de biopuces, le niveau d’expression de l’ensemble des gènes à partir
d’échantillons sanguins prélevés chez 50 patients (np = 50) et chez 50 sujets sains (“contrôles”, nc = 50). He
obtains the following results.

• for the patients, a mean expression level of mp = 21
• for the controls, a mean expression level of mt = 10
• the sample standard deviations are identical for the two groups: sp = sc = s = 15

In order to test whether the observed difference between the means is significant, the researcher decides to
run a Student test.

a. Is the choice of this test appropriate? Justify. Which alternatives would have been conceivable?

b. Since we have no prior idea about the sense of a potential effect of the disease on this gene, would you
recommend a two-tailed or single-tailed test?

c. Formulate the null hypothesis and explain it in one sentence.

d. Compute (manually) the t statistics.

e. Based on the Student’s t table, evaluate the p-value of the test.

f. Interpret this p-value, and help the researcher to draw a conclusion from the study.

Exercise 2
A research team detected an association between bilharziose and a high concentration of IgE in the blood.?
Another team attempted to replicate this result in an independent population exposed to bilharziose, and
obtained the following results.

• For resistant subjects (nr = 32), the mean is mr = 10.
• For susceptible subjects (ns = 32), the mean is ms = 7.
• The sample standard deviations are identical for the two groups: sr = ss = s = 2.8.
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a. Which method would you recommend to test mean equality? Justify.

b. Which are the assumptions of this test?

c. Assuming that these conditions are fulfilled, formulate the null hypothesis and compute the t statistics.

d. Evaluate the corresponding P-value basd on the Student’s t table.

e. Based on these results, which decision would you take? Justify your answer
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